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1. Introduction

Thiazol is five-membered heterocyclic compound containing both 
sulfur and nitrogen atoms at positions 1 and 3 of the ring, is found in 
important natural compounds like thiamine (vitamin B1), penicillin, and 
carboxylase, as well as in numerous synthetic drugs, dyes, and industrial 
chemicals [1-4]. First described by Hantzsch and Weber in 1887, its struc-
ture confirmed by Popp in 1889. With the molecular formula C₃H₃NS, the 
thiazole ring exhibits aromatic character due to a conjugated π-electron 
system, similar to that of benzene. This aromaticity, provided by the de-
localization of six π-electrons across the ring, contributes to the chemical 
stability of thiazole, Fig.1 [5-8].

Figure 1. The resonance forms of thiazole

Thiazole exhibits mildly basic properties. The nitrogen atom’s lone 
pair is involved in the aromatic π-system, which makes it a weak base. 
Nevertheless, the thiazole ring is relatively reactive toward electrophilic 
agents, allowing it to serve as a useful intermediate in various synthetic 
pathways. Electrophilic substitution reactions on the thiazole ring primar-
ily occur at the C-2 and C-5 positions, where electron density is relatively 
high. The ring can also undergo nucleophilic or basic reactions, some-
times leading to ring-opening or structural modifications. This reactivity 
profile makes thiazole a versatile building block in organic synthesis [9-
13].

2. Synthetic Methodology of Thiazoles

2.1. Hantzsch Synthesis

The Hantzsch thiazole synthesis is a classical organic reaction that 
forms thiazole rings by condensing α-haloketones with thioamides. This 
method, first reported by Arthur Rudolf Hantzsch in 1887, provides an 
efficient route to substituted thiazoles, which are five-membered hetero-
cyclic compounds containing both sulfur and nitrogen atoms, Fig. 2 [14].   

Nurcan BERBER
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Figure 2. Synthesis of substituted 2-aminothiazoles with Hantzsch condensation

2.2. Cook–Heilbron Synthesis

In this synthesis, an α-aminonitriles/ α-aminoamides reacts with car-
bon disulfide to produce the thiazole ring, Fig.3 [15].

Figur 3. Cook-Heilbron thiazole synthesis

2.3. Robinson-Gabriel Synthesis

Gabriel synthesis is another way to synthesize thiazole compounds. 
In this reaction, 2,5-disubstituted thiazole derivatives are produced by 
treating acylamino-ketone with phosphorus pentasulfide, this technique 
focuses on the closure of the thiazole ring, Fig.4 [16].
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Figur 4. Gabriel’s synthesis of 2,5-disubstituted 1,3-thiazoles

2.4. Microwave-assisted synthesis of thiazoles

Microwave-assisted organic synthesis (MAOS) has emerged as a pow-
erful technique in modern synthetic chemistry, offering significant advan-
tages over conventional thermal methods. In the context of thiazole syn-
thesis, microwave irradiation enables rapid and uniform heating, which 
significantly shortens reaction times and improves energy efficiency. This 
approach often leads to higher product yields and improved purity, while 
also minimizing the formation of side products. Furthermore, it typically 
requires little to no solvent, contributing to the principles of green chem-
istry by reducing environmental impact. The enhanced reproducibility 
and operational simplicity of microwave-assisted methods also make 
them particularly attractive for the synthesis of heterocyclic compounds, 
including bioactive thiazole derivatives. Patel et al., in their review arti-
cle, have highlighted various synthetic strategies for thiazole derivatives 
carried out under microwave-assisted conditions, in Table 1 [17].

Table 1. Synthesis of some thiazole derivatives using microwave irradiation

Synthesis Method Source

1.

Wagare, D. S., Netankar, P. 
D., Shaikh, M., Farooqui, 
M., & Durrani, A. (2017). 
Highly efficient microwa-
ve-assisted one-pot synthesis 
of 4-aryl-2-aminothiazoles 
in aqueous medium. Envi-
ronmental Chemistry Let-
ters, 15(3), 475-479.

2.

Karamthulla, S., Pal, S., 
Khan, M. N., & Choudhury, 
L. H. (2014). “On-water” 
synthesis of novel trisubsti-
tuted 1, 3-thiazoles via mic-
rowave-assisted catalyst-free 
domino reactions. RSC Ad-
vances, 4(71), 37889-37899.



International Studies in Science and Mathematics - June 2025 5

3. 

Chinnaraja, D., & Rajalaks-
hmi, R. (2015). A facile, sol-
vent and catalyst free, mic-
rowave assisted one pot sy-
nthesis of hydrazinyl thiazole 
derivatives. Journal of Saudi 
Chemical Society, 19(2), 
200-206.

4.

Riyadh, S. M., Khalil, K. D., 
& Aljuhani, A. (2018). Chi-
tosan-MgO nanocomposite: 
One pot preparation and its 
utility as an ecofriendly bi-
ocatalyst in the synthesis of 
thiazoles and [1, 3, 4]thiadia-
zoles. Nanomaterials, 8(11), 
928.

5.

Sakiyama, R., Aoyama, T., 
Akazawa, H., Kikuchi, N., 
Omura, K., Ohsaki, A., ... & 
Kodomari, M. (2018). Sol-
vent-free synthesis of 2-alky-
lbenzothiazoles and bile 
acid derivatives containing 
benzothiazole ring by using 
active carbon/silica gel and 
microwave. Journal of Oleo 
Science, 67(10), 1209-1217.

6.

Shi, F., Li, C., Xia, M., Miao, 
K., Zhao, Y., Tu, S., ... & Ma, 
N. (2009). Green chemose-
lective synthesis of thiazolo 
[3, 2-a] pyridine derivatives 
and evaluation of their anti-
oxidant and cytotoxic activi-
ties. Bioorganic & medicinal 
chemistry letters, 19(19), 
5565-5568.

2.5. Ultrasound irradiated synthesis of thiazole derivatives

Ultrasound waves create cavitation (the formation and collapse of 
microbubbles) in a liquid medium. Produces local high temperature and 
pressure, increases the collision frequency of reactants and lowers the 
activation energy. This allows reactions to occur faster, more efficiently 
and more cleanly [18]. Patel et al., in their review article, have highlighted 
various synthetic strategies for thiazole derivatives carried out under ul-
trasound waves, in Table 2 [17].
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Table 1. Synthesis of some thiazole derivatives using ultrasound irradiation

Synthesis Method Source

1.

Venzke, D., Flores, A. F., 
Quina, F. H., Pizzuti, L., & 
Pereira, C. M. (2011). Ult-
rasound promoted greener 
synthesis of 2-(3, 5-di-
aryl-4, 5-dihydro-1H-py-
razol-1-yl)-4-phenylthia-
zoles. Ultrasonics sonoc-
hemistry, 18(1), 370-374.

2.

Sadjadi, S., & Sepehrian, 
H. (2011). Cu (OAc) 2/
MCM-41: An efficient 
and solid acid catalyst for 
synthesis of 2-arylbenzot-
hiazoles under ultrasound 
irradiation. Ultrasonics 
sonochemistry, 18(2), 
480-483.

3. 

Bouherrou, H., Saidoun, 
A., Abderrahmani, A., Ab-
dellaziz, L., Rachedi, Y., 
Dumas, F., & Demenceau, 
A. (2017). Synthesis and 
biological evaluation of 
new substituted hantzsch 
thiazole derivatives from 
environmentally benign 
one-pot synthesis using 
silica supported tungs-
tosilisic acid as reusable 
catalyst. Molecules, 22(5), 
757.

4.

Shabaan, S. N., Baaiu, B. 
S., Abdel-Aziem, A., & 
Abdel-Aziz, M. S. (2021). 
Ultrasound-assisted green 
synthesis and antimicrobi-
al assessment of 1, 3-thia-
zoles and 1, 3, 4-thiadiazi-
nes. Green Chemistry Let-
ters and Reviews, 14(4), 
679-688.

5.

Shahbazi-Alavi, H., & 
Safaei-Ghomi, J. (2019). 
Nano-Fe3O4 attached to 
Crosslinked sulfonated 
polyacrylamide (Cross-
PAA-SO3H) as high 
performance catalyst for 
the synthesis of thiazoles 
under ultrasonic irradiati-
ons. Nanochemistry Rese-
arch, 4(1), 55-63.
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3. Therapeutic Importance of Thiazole Derivatives

3.1. Anticancer Activity of Thiazole

The thiazole ring also stands out as an effective compound in cancer 
treatment due to the presence of sulfur and nitrogen atoms in its structure. 
Sulfur, exhibiting strong nucleophilic properties, allows certain thiazole 
derivatives to bind to target regions on DNA through sulfur atoms. The 
nitrogen atom, on the other hand, can form proton and hydrogen bonds, 
enabling tight interactions with DNA. These interactions disrupt DNA 
replication and inhibit the proliferation of cancer cells [19, 20]. For exam-
ple, Alpelisib was clinically approved by the FDA on May 24, 2019, and 
is used in the treatment of metastatic breast cancer to inhibit the prolifer-
ation of cancer cells [21]. Dasatinib, on the other hand, was approved in 
2006 and began to be used for the oral treatment of leukemia [22]. Some 
anticancer thiazole derivatives are given in Fig. 5.

Figure 5. Structure of some thiazole derivative anticancer agents

3.2. Antibacterial activity of thiazole

Thiazole derivatives exert their antibacterial effects through various 
biochemical mechanisms. These effects may vary depending on their 
structural properties and the specific bacterial enzymes or cellular com-
ponents they target. In general, thiazole derivatives exert their antibacte-
rial effects: by inhibiting bacterial cell wall synthesis [23, 24]; by inhib-
iting bacterial DNA synthesis [25]; by targeting bacterial protein [26]; or 
inducing changes in the cell membrane that lead to bacterial cell death 
[27]. For example, Sulfathiazole, which contains a thiazole ring, compet-
itively inhibits the bacterial dihydropteroate synthase enzyme, thereby 
blocking the folic acid synthesis pathway and indirectly inhibiting bac-
terial DNA synthesis [28]. On the other hand, Thiazomycin, a natural 
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thiazole derivative, binds to the ribosomal 50S subunit and inhibits pro-
tein synthesis; through this mechanism, it exhibits strong antibacterial 
activity, particularly against Gram-positive bacteria [29]. The chemical 
structures of these compounds are given in Fig.6.

Figure 6. Chemical structure of Sulfathiazole and Thiazomycin

In addition, some representative examples of thiazole derivatives with 
antibacterial potential containing β-lactams are given in Fig. 7. 

Figure 7. Structure of some β-lactam containing thiazole derivative antibacterial 
agents
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3.3. Antivirus activity of thiazole

The antiviral effects of thiazole derivatives arise through various bio-
chemical mechanisms. Some of these compounds inhibit viral replication 
by targeting viral RNA or DNA polymerase enzymes [30]. Other thiazole 
derivatives suppress viral proliferation by halting protein synthesis within 
the host cell [31]. Additionally, certain derivatives have been reported to 
exhibit antiviral activity by preventing viruses from entering host cells 
[32]. In this context, thiazole derivatives that have been synthesized are 
reported to inhibit a wide range of viruses, including influenza viruses, 
coronaviruses, herpesviruses, hepatitis B and C viruses, bovine viral di-
arrhea virus, chikungunya virus, and human immunodeficiency viruses 
(HIV) [33]. Some representative examples of thiazole derivatives with 
antivirus potential are given in Fig. 8.

Figure 8. Structure of some thiazole derivative antivirus agents

3.4. Antifungal activity of thiazole

Fungal diseases are responsible for a higher global mortality rate than 
breast cancer or malaria [34]. Recent studies have shown that systemic 
infections caused by Candida species are the fourth most common cause 
of hospital-acquired bloodstream infections [35]. In Fig. 9 we see the 
structures of thiazole derivatives Isavuconazole, Fosravuconazole and 
Thiabendazole.
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Figure 9. Structure of some thiazole derivative antivirus agents

3.5. Antiinflammatory activity of thiazole

Meloxicam is a well-known thiazole derivative nonsteroidal antiin-
flammatory drug used for the rheumatic and osteoarthritis diseases. It se-
lectively inhibits the enzyme cyclooxygenase-2 (COX-2) [36].  Fentiazac 
is another thiazole derivative anti-inflammatory agent developed for use 
in joint and muscle pain[37]. The chemical structures of these compounds 
are given in Fig.10.

Figure 10. Chemical structure of Meloxicam and Fentiazac
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4. Conclusion 

In conclusion, thiazole derivatives stand out as an important class of 
heterocyclic compounds due to their versatile synthetic accessibility and 
broad spectrum of biological activities. In addition to classical methods 
such as the Hantzsch, Cook–Heilbron, and Gabriel syntheses, recent ad-
vances in microwave-assisted and ultrasound-promoted green method-
ologies have significantly enhanced the efficiency, yield, and eco-com-
patibility of thiazole synthesis. These alternative techniques offer shorter 
reaction times, higher selectivity, and reduced solvent consumption, there-
by aligning well with the principles of green chemistry. Especially, green 
solvent-assisted syntheses using water, ethanol, and other benign media 
under irradiation conditions provide an environmentally friendly alter-
native to conventional organic solvents. The combined use of non-toxic 
solvents and energy-efficient technologies (such as microwave and ultra-
sound) not only minimizes environmental impact but also facilitates scal-
able and sustainable drug development processes.

Therapeutically, thiazole derivatives continue to demonstrate nota-
ble anticancer, antibacterial, antiviral, antifungal, and anti-inflammato-
ry properties, with several FDA-approved examples already in clinical 
use. Their unique ability to interact with DNA, proteins, and enzymes 
at a molecular level renders them highly promising scaffolds for novel 
drug design. Overall, the integration of innovative synthetic methods 
with therapeutic targeting strategies will further enhance the relevance 
of thiazole derivatives in modern medicinal chemistry. Future research 
focusing on structure-activity relationship (SAR) studies, biocompatibil-
ity, and targeted delivery systems may pave the way for next-generation 
thiazole-based pharmaceuticals.
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Studies and observations about the Universe originate back to very 
ancient eras. Assyro-Babylonians left the first documented records of 
systematic astronomical observations established in 1000 BCE [1]. Since 
then, learning about the Universe has been a curious subject. The first 
modern studies about the origin and evolution of the Universe started in 
the 20th century with the work of Edwin Hubble. Hubble’s observations of 
distant galaxies revealed that the universe was expanding [17]. Four the-
ories have emerged over the years, each providing different explanations 
for the beginning and evolution of the universe. These theories are the 
Steady State theory, the Pulsating theory, the Inflationary theory, and the 
Big Bang theory. 

The Big Bang Theory

This theory is first based on the fact that galaxies are moving away 
from each other in all directions, for which a great force is needed. Georg-
es Lemaitre, a Belgian priest, was the first to suggest this theory in the 
1920s asserting the Universe arose from a single point [2]. The observa-
tions of Edwin Hubble corroborated this idea. He observed that galaxies 
rush away from the Earth in all directions. Moreover, with the discovery 
of cosmic microwave radiation by Arno Penzias and Robert Wilson in 
the 1960s, the Big Bang theory was verified since these microwaves are 
interpreted as the echoes of the Big Bang [2]. 

According to the theory, the Universe began around 13.7 billion years 
ago. The point mentioned above comprised of condensed infinitesimally 
small singularity, in other words infinitely dense and hot. From this point 
the explosion took place and the expansion was initiated, which is faster 
than the speed of light. Thereafter, the fundamental particles such as elec-
trons, protons and neutrons formed. It was impossible to observe visible 
light on his “soup” of particles. However, over time free electrons and 
protons randomly met each other and formed neutral atoms. It allowed 
the constitution of visible light, which is estimated to happen 380,000 
years after the Big Bang. It is called cosmic microwave background and 
discovered by accident [3].

In 1965, Arno Penzias and Robert Wilson were attempting to build a 
radio receiver; however, they caught very high temperatures, which they 
thought to be caused by pigeons. At the same time, a team at Prince-
ton University led by Robert Dicke was also trying to find evidence for 
Cosmic Microwave Background, and they realized that this strange ob-
servation could be related to Cosmic Microwave Background, so they 
further investigated the situation, and together with Wilson and Penzias, 
published a paper about this observation being the discovery of Cosmic 
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Microwave Background[3]. After all, the discovery of the Cosmic Micro-
wave Background is the strongest corroborative evidence of the Big Bang 
theory.

Another observation corroborating the Big Bang theory is the fact that 
galaxies and stars are observed from the Earth in a red-shifted manner 
[12].  It means that cosmic objects appear more reddish than they are 
when they are observed from the Earth, and it is caused by the ‘Doppler 
Effect’ [13]. Doppler Effect remarks that when an object moves away from 
the observer, the observed wavelength of either the sound or the electro-
magnetic wave becomes larger, and in the case of the electromagnetic 
wave, the appearance of the object shifts toward the red end of the spec-
trum. How much it is shifted is related to the relative velocity of the mov-
ing object. The higher the velocity the object has, the more red it appears 
[14]. In conclusion, the observation of the redshifted cosmic object from 
the Earth implies the fact that the universe is expanding [14]. Moreover, 
it is shown that this expansion is taking place in an accelerating way. In 
other words, the expansion rate of the universe is speeding up, the cause 
of which is still a mystery today [16]. 

Figure 1: The figure shows how the expanding universe is related to the 
observation of red-shifted cosmic objects. Here we can see that as the universe 
expands, the appearance of the objects from the Earth shifts toward red. [15]
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The Steady State Theory

The Steady State Theory was first proposed in 1948 by British astro-
physicist Hermann Bondi, American mathematician Thomas Gold, and 
British mathematician Fred Hoyle [4]. They knew that the Universe con-
stantly expands; however, they thought that the average density of matter 
is kept constant. That is why, they suggested that new matter is being 
continuously created so that new galaxies and stars can form. Thereby, it 
could explain how the Universe accomplish to keep uniformity on a large 
scale (not local). Moreover, according to the Steady State theory, there is 
neither the beginning nor the end of the universe in terms of time[4]. 

Back in time, the Steady State theory was the competitor theory 
against the Big Bang theory. Nonetheless, after the discovery of cosmic 
microwave background, the Steady State Theory was mostly falsified in 
that it had predicted that the density of the Universe does not change; on 
the other hand, the observation of cosmic microwave background states 
otherwise[4]. Also, The Steady State theory struggled to provide com-
pelling evidence to substantiate its claims, particularly in explaining the 
observed abundance of light elements or the distribution of galaxies. An-
other big problem with the theory is that the continuous creation of matter 
violates the law of conservation of energy. 

Not only the Steady State theory could not maintain its claims by piec-
es of evidence, but some discoveries contradict the premises of the steady 
state theory. As mentioned above, the Steady State theory anticipates a 
non-changing Universe on a large scale, so the general distribution of en-
ergy and matter in the Universe should be similar to what it was billions 
of years ago. However, it is shown that the formation of quasars was much 
more frequent billions of years ago[5]. It implies that the distribution of 
energy and matter has changed over time in the Universe, which is con-
tradictory to a steady-state Universe. 

The Pulsating Theory

The Pulsating Theory emerged as a contender to the prevailing Big 
Bang theory and is based on the Universe’s cyclical nature. Although 
there is no definite originator of this theory to pinpoint, Albert Einstein, 
Richard Tolman, and Hermann Bondi, among others, can be counted as 
contributors [18, 19]. The theory suggests that the Universe cyclically un-
dergoes expansion and contraction, resembling a cosmic heartbeat. 

In terms of how the Universe begins, the Pulsation Theory consider-
ably resembles the Big Bang theory. The Universe starts from a singular-
ity and begins expanding. On the other hand, as opposed to the Big Bang 
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theory, the Pulsating Theory suggests a destination for the Universe, 
which is it is going to contract after a critical point in time that is referred 
to as ‘the Big Crunch’[6]. During the Big Crunch, the Universe collapses 
inwards until it reaches the singularity point. It is important to note that 
the Pulsation Theory, unlike the Steady State theory, is consistent with 
the law of conservation of energy.

There are several challenges that the Pulsation Theory confronts. First-
ly, the activity of the Big Crunch comes with the requirement of the vio-
lation of the second law of thermodynamics, which is in a closed system 
entropy never decreases [7]. Nonetheless, according to Pulsating Theory, 
the Universe is a closed system that undergoes expansions and collapses. 
Furthermore, it is shown that the Universe is expanding in a speeding-up 
manner; in other words, the Universe has an accelerating expansion ac-
tivity [8]. However, a pulsating universe would be decelerating, so that 
it eventually stops and undergoes the Big Crunch. In addition to these 
falsifying arguments, since the theory suggests a cyclic universe, each 
of which would last billions of years, it is challenging to gather empirical 
data to confirm the theory, especially the Big Crunch. This is because if 
the Universe had undergone the Big Crunch before the Big Bang, then 
the Universe once reached singularity. It means that all the information 
from the Big Crunch disappeared in the singularity, so it is impossible to 
acquire evidence from the Big Crunch. 

Inflationary Theory

The Inflationary Theory was first proposed in the early 1980s by 
American physicist Alan Guth and further developed by Andrei Linde, 
Paul Steinhardt, and others. It aimed to address several unanswered 
questions posed by the Big Bang Theory and provide an explanation for 
the universe’s remarkable uniformity and structure [9]. The Inflationary 
Theory postulates that the universe experienced a brief and exponential 
expansion, often referred to as cosmic inflation, during its earliest mo-
ments. This expansion occurred within a fraction of a second (10^(-36) 
seconds[9]) after the Big Bang, causing the universe to grow exponential-
ly larger by a factor of at least 1026  [10]. 
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Figure 2: A demonstration showing that two photons (A and B) from separate 
horizons meet in another horizon. [10]

It is important to note that two points in separate cosmic horizons 
cannot communicate with each other since there is the limit as speed of 
light. In other words, there is no time for any photon emitted from cosmic 
horizon A to reach cosmic horizon B (see Figure 1). Instead, two photons 
emitted from these horizons separately can meet in the middle of another 
cosmic horizon, which is the Earth in the figure. 

   The cosmic microwave background radiation coming from different 
parts of the universe is observed to have the same temperature, suggest-
ing they all originate from the beginning of the universe as if the Earth 
is the centre of the universe. However, it is valid for every point in the 
universe, though not every point in the universe may be the centre of 
the universe [10]. Then how can two photons, cosmic horizons of which 
cannot communicate with each other and released from the beginning of 
the universe reach one another? The answer is the Inflationary Theory. 
Because at the very beginning of the universe, the universe expands with 
an exponential, order of magnitude of 1026 [10], two photons released at 
the same time can be kept from different cosmic horizons. It means that 
at the very early times of the universe, cosmic horizons could form [10].  
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Because of the symmetry argument of classical physics, it would be 
expected for an early universe to expand in a perfectly symmetric way. 
However, cosmic inflation was so powerful that it could make quantum 
fluctuations influential. A normal 10^28 cm quantum fluctuation was en-
hanced to cosmological distances [10]. Thereby, it could provide uncer-
tainty for the matter to locally behave. Together with the gravitational 
effects that became regionally denser due to quantum fluctuation’s impact 
on matter, the variation from a perfect symmetry could be established. 
Consequently, the universe ended up locally heterogeneous but homoge-
nous/uniform in a larger scale [10]. This locally heterogeneous structure 
of the universe served as seeds for stars and galaxies to form. 

Figure 3: A demonstration of the evolution of the universe that has undergone 
cosmic inflation. As seen in the figure, it is possible to see a dramatic increase in 
the size of the universe at the beginning. It is important to note that proportions 

are fiction and are just meant to be demonstrative. [11]

Discussion & Conclusion

The quest to comprehend the mysteries of the universe has captivated 
human curiosity for centuries. Throughout history, scientists and cosmol-
ogists have proposed various theories to explain the origin, evolution, 
and fundamental nature of our vast cosmos. Four prominent cosmological 
theories that have shaped our understanding of the universe’s inception 
and structure are the Big Bang Theory, the Steady State Theory, the Pul-
sating Theory, and the Inflationary Theory. 

The Big Bang Theory, widely considered the foundation of modern 
cosmology, suggests that the universe originated from a singular explo-
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sive event, approximately 13.8 billion years ago. This theory posits that 
the universe began as an infinitely hot, dense, and compact singularity, 
expanding rapidly and cooling over time [2]. Over time, the theory is cor-
roborated by several observations and discoveries. Cosmic background 
microwave radiation carries traces from the very early ages of the uni-
verse, and it gives data from that time. Furthermore, the observation of 
redshifted cosmic objects proved the fact that the universe is expanding, 
which is one of the predictions of the Big Bang theory. 

The Steady State theory was asserted as a main competitor to the Big 
Bang theory. It anticipated that time did not begin, and it won’t end at a 
point. It is an everlasting concept. In order to balance the expansion of the 
universe, new matter is being continuously created so that steady density 
of the universe can be established. However, not only it could not main-
tain its premises with evidences, but also new observations like cosmic 
background microwave have mostly falsified the theory. Additionally, at 
the first place, the creation of new matter requires the violation of the law 
of the conservation of energy. 

Pulsating theory emerged as an extended version of the Big Bang theo-
ry. It predicts the same scenario for the beginning of the universe with the 
Big Bang theory; on the other hand, it also claims that at a critical point 
in time, expansion of the universe will stop, and it will start to collapse 
inward, and it is referred as ‘the Big Crunch’. Finally, this two event last 
forever in a cyclic manner one after another. There are two major prob-
lem with this theory. First, it violates the second law of thermodynamics, 
which is in a closed system entropy never decreases, because the Big 
Crunch requires decrease in entropy not locally but universally, which is 
impossible. Moreover, the theory claims that after the Big Crunch the uni-
verse again reaches the singularity; that’s why practically, it impossible 
to collect empirical data from the previous cycle, and hence advocating 
the theory. 

Inflationary theory could fill the blanks which the Big Bang theory left 
behind. How two separate photons carrying information from the very 
early stages of the Universe come from distinguished cosmic light hori-
zons could be unveiled. The rate of expansion of the universe after the 
big explosion was so high that cosmic light horizons could form at the 
very early stages of the universe. Besides, how the perfect symmetry was 
not conserved was a big question. The inflation theory accomplished to 
answer this question, too. It advocates that the great expansion rate made 
the quantum fluctuation effective so that general symmetry could be pre-
served, though there could be some local heterogeneities, which is the 
characteristics of the universe that we observe today. 
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Today, the Steady State theory and Pulsating theory are not main-
tained because of a lack of evidence and the violation of some funda-
mental physical laws caused by their premises. The Big Bang theory and 
the Inflationary theory are the most prevailing theories that attempt to 
explain how the universe began and how it has been evolving. However, 
some questions are still waiting to be answered, some of which triggered 
the singularity to explode and expand in the first place, and what is the 
reason behind the accreting universe.   

I would like to thank Mert Baysan, one of my undergraduate students, 
for his help in preparing this manuscript.
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1 Introduction 
 
Many experiments aim to investigate the main and interaction effects of 
two or more factors. Factorial designs examining the simultaneous effects 
of multiple factors on a response variable are the most efficient designs for 
such experiments in general. They provide an advantage to the 
experimenters in terms of time and cost and therefore are widely used in 
various fields such as engineering, marketing, health sciences, food 
industry, environmental sciences etc., (Fisher, 1935; Yates, 1937; 
Montgomery, 2007; Şenoğlu and Acıtaş, 2014). 
 
Factorial design is defined as an experimental design in which each level 
of every factor appears with every level of all other factors, see Hicks 
(1982), Cox and Reid (2000), Kutner et al. (2004), Tabachnick and Fidell 
(2007), Onyiah (2008), Wu and Hamada (2009) and Montgomery (2017). 
Here, a factor is a controlled independent variable whose levels are 
determined by the experimenter. 
 
There are special cases of factorial designs such as 2! , 3! , …	etc., where 𝑘𝑘 
denotes the number of factors.  In literature, most studies have focused on 
2! factorial designs in the context of parameter estimation and hypothesis 
testing. For example, Şenoğlu (2005, 2007) obtained robust estimators of 
the parameters in the 2! factorial design using the modified maximum 
likelihood (MML) methodology proposed by Tiku (1967) and proposed 
test statistics based on these estimators for testing the main and interaction 
effects when the distributions of error terms are Weibull and generalized 
logistic, respectively. Şenoğlu et al. (2012) extends their results to the cases 
where the underlying distributions are short-tailed symmetric and long-
tailed symmetric.  
 
To the best of our knowledge, there is no study in the literature on 3! 
factorial design in the context of robust estimation and hypothesis testing. 
In this study, we obtain the MML estimators of the model parameters and 
propose new tests for testing the main and interaction effects under the 
assumption that the distribution of error terms is Azzalini’s skew-normal 
(SN), see Azzalini (1985). It should be noted that SN distribution is 
appropriate for analyzing data following unimodal empirical distribution 
while exhibiting a certain degree of skewness, a situation that is often 
encountered in practical applications, see Kim (2005). Therefore, it is 
extensively used to analyze real-life problems. 
 
If the random variable 𝑌𝑌 has Azzalini’s SN distribution, then it is denoted 
by 𝑌𝑌~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎, 𝜆𝜆). Probability density function (pdf) of SN distribution is 
given by 
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respectively. See Table 1 for the skewness and kurtosis values of the SN 
distribution for some selected values of 𝜆𝜆. 

 

Table 1: Skewness and kurtosis values of the SN distribution for some 
selected values of 𝜆𝜆. 
 

𝜆𝜆 -10 -3 0 3 10 
𝛾𝛾% -0.96 -0.67 0.00 0.67 0.96 
𝛾𝛾! 3.82 3.51 3.00 3.51 3.82 

 
It is clear from Table 1 that SN distribution can be symmetric or skewed 
depending on the value of parameter 𝜆𝜆. Plots of the SN density function 
for different values of 𝜆𝜆 are shown in Figure 1. 
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Figure 1: Plots of the SN density function for different values of 𝜆𝜆. 

 
 
It can be seen from Figure 1 and Table 1 that SN distribution reduces to the 
well-known standard normal distribution when the skewness parameter 𝜆𝜆 
is equal to zero. 
 
The rest of the paper is organized as follows. In Section 2, 3! factorial 
design model is defined. In Section 3, MML estimators of the model 
parameters are obtained. In Section 4, new tests are proposed based on 
MML estimators for testing the main effects and interaction effects. In 
Section 5, performances of the MML estimators and proposed tests are 
compared with the corresponding LS estimators and the tests based on 
them, respectively, via Monte Carlo simulation study. A simulated data set 
is analyzed for illustrative purposes in Section 6. The results for the 3! 
factorial design are given in Section 7. Finally, concluding remarks are 
given.  
 
2 The 𝟑𝟑𝒌𝒌 Factorial Design 
 
It is known that 3# and 3% factorial designs are the most commonly used 
special cases of 3! factorial designs. The 3# factorial design is equivalent 
to a two-way ANOVA model when 𝑖𝑖, 𝑗𝑗 = 1,2,3, therefore the results 
corresponding to the 3# factorial design are not given in this study for the 
sake of brevity, see Çelik (2012) in the context of two-way ANOVA when 
the distribution of error terms is SN. In this section, we just give the results 
corresponding to 3% factorial design. Obviously, the results obtained in the 
rest of the paper can easily be extended to the 3&, 3',… factorial designs. 
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Pictorial representation of the 33 factorial design is given below. 
 

 
Figure 2: Pictorial representation of the 33 factorial design. 

 
Here, it is obvious that there are 33=27 treatment combinations.  
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3 MML Estimators 
 
In this section, MML estimators of the model parameters in (2) are 
obtained when the underlying distribution is SN. 
 
Likelihood (𝐿𝐿) and log-likelihood (ln 𝐿𝐿) functions are given by 
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,  
𝑁𝑁 = 3%𝑛𝑛 and 𝑛𝑛 is  the number of replicates. 
 
The partial derivatives of  ln 𝐿𝐿 function with respect to the parameters of 
interest give the following likelihood equations 
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Maximum likelihood (ML) estimators of the unknown model parameters 
are obtained by solving these equations simultaneously. However, explicit 
solutions for the parameters cannot be obtained since the likelihood 
equations have nonlinear function of the parameters defined as  ?@'C$%&'A

B@'C$%&'A
 . 

As a result, numerical methods are necessary to handle the complexities of 
these functions. However, such methods can lead to convergence 
problems. To address these problems, we use MML methodology proposed 
by Tiku (1967), which offers explicit solutions for the likelihood equations. 
It should be noted that MML estimators maintain the same asymptotic 
properties with the corresponding ML estimators, for detail see for 
example Bhattacharya (1985) and Vaughan and Tiku (2000). The following 
steps are used for deriving MML estimators of the model parameters.  
 
Firstly, observations are sorted in ascending order as 𝑦𝑦()!(") ≤ 𝑦𝑦()!(#) ≤
⋯ ≤ 𝑦𝑦()!(-) and likelihood equations are rewritten in terms of ordered 
observations as follows 
 
; <= >
;%
= )

"
∑ ∑ ∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
-0)

/
,0)

/
+0) − '

"
∑ ∑ ∑ ∑ 𝑤𝑤J𝑧𝑧+,-(.)L4

.0)
/
-0)

/
,0)

/
+0) = 0, (5) 

  
; <= >
;6$
= )

"
∑ ∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
-0)

/
,0) − '

"
∑ ∑ ∑ 𝑤𝑤J𝑧𝑧+,-(.)L4

.0)
/
-0)

/
,0) = 0,                 (6) 

  
; <= >
;7%

= )
"
∑ ∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
-0)

/
+0) − '

"
∑ ∑ ∑ 𝑤𝑤J𝑧𝑧+,-(.)L4

.0)
/
-0)

/
+0) = 0,                 (7) 

 
; <= >
;:&

= )
"
∑ ∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
,0)

/
+0) − '

"
∑ ∑ ∑ 𝑤𝑤J𝑧𝑧+,-(.)L4

.0)
/
,0)

/
+0) = 0,                 (8) 

 
; <= >
;(67)$%

= )
"
∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
-0) − '

"
∑ ∑ 𝑤𝑤J𝑧𝑧+,-(.)L4

.0)
/
-0) = 0,                              (9) 

  
  
; <= >
;(6:)$&

= )
"
∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
,0) − '

"
∑ ∑ 𝑤𝑤J𝑧𝑧+,-(.)L4

.0)
/
,0) = 0,                              (10) 

  
; <= >

;(7:)%&
= )

"
∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
+0) − '

"
∑ ∑ 𝑤𝑤J𝑧𝑧+,-(.)L4

.0)
/
+0) = 0,                              (11) 

  
; <= >

;(67:)$%&
= )

"
∑ 𝑧𝑧+,-(.)4
.0) − '

"
∑ 𝑤𝑤J𝑧𝑧+,-(.)L4
.0) = 0,                                            (12) 

 
and 
 



34  . Özgün KARATEPE, Birdal ŞENOĞLU

; <= >
;"
= − 5

"
+ )

"
∑ ∑ ∑ ∑ 𝑧𝑧+,-(.)!4

.0)
/
-0)

/
,0)

/
+0)   

− '
"
∑ ∑ ∑ ∑ 𝑧𝑧+,-(.)𝑤𝑤J𝑧𝑧+,-(.)L4

.0)
/
-0)

/
,0)

/
+0) = 0                                   (13) 

 
where 𝑤𝑤(𝑧𝑧) = ?('D)

B('D)
. 

 
Note that summation is invariant to ordering, in other words,  
∑ ∑ ∑ ∑ 𝑧𝑧+,-.4

.0)
/
-0)

/
,0)

/
+0) = ∑ ∑ ∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
-0)

/
,0)

/
+0) . 

 
Secondly, the function  𝑤𝑤G𝑧𝑧()!(*)I  is linearized by using the first two terms 
of the Taylor series expansion as follows 
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Note that 𝑡𝑡()!(*) = 𝑡𝑡(*), 𝛼𝛼+,-. = 𝛼𝛼. and 𝛽𝛽+,-. = 𝛽𝛽. since the number of 
replicates in each cell are equivalent to 𝑛𝑛.  
 
Approximate values of 𝑡𝑡(*) are obtained by using the following equality 
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where 𝑓𝑓(𝑧𝑧) denotes the pdf of standard SN distribution. 
 
By substituting 𝑤𝑤G𝑧𝑧()!(*)I ≅ 𝛼𝛼* − 𝛽𝛽*𝑧𝑧()!(*) into the likelihood equations 
given in (5)-(13), modified likelihood equations are obtained as follows 
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∑ ∑ ∑ 𝑧𝑧+,-(.)4

.0)
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-0)
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/
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/
,0)

/
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"
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.0)
/
,0)

/
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∑ ∑ 𝑧𝑧+,-(.)4

.0)
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-0) − '
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∑ ∑ J𝛼𝛼. − 𝛽𝛽.𝑧𝑧+,-(.)	L4

.0)
/
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; <= >∗

;(6:)$&
= )

"
∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
,0) − '

"
∑ ∑ J𝛼𝛼. − 𝛽𝛽.𝑧𝑧+,-(.)	L4

.0)
/
,0) = 0, 

  
; <= >∗

;(7:)%&
= )

"
∑ ∑ 𝑧𝑧+,-(.)4

.0)
/
+0) − '

"
∑ ∑ J𝛼𝛼. − 𝛽𝛽.𝑧𝑧+,-(.)	L4

.0)
/
+0) = 0,  

  
; <= >∗

;(67:)$%&
= )

"
∑ 𝑧𝑧+,-(.)4
.0) − '

"
∑ J𝛼𝛼. − 𝛽𝛽.𝑧𝑧+,-(.)	L4
.0) = 0  
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; <= >∗

;"
= − 5

"
+ )

"
∑ ∑ ∑ ∑ 𝑧𝑧+,-(.)

!4
.0)

/
-0)

/
,0)

/
+0)   

          − '
"
∑ ∑ ∑ ∑ 𝑧𝑧+,-(.)J𝛼𝛼. − 𝛽𝛽.𝑧𝑧+,-(.)	L4

.0)
/
-0)

/
,0)

/
+0) = 0. 

 
Solutions of these modified likelihood equations give the following MML 
estimators  
 
�̂�𝜇 = 	�̂�𝜇…. − '

'∆
K
(𝜎𝜎_ ,    �̂�𝜏+ = �̂�𝜇+... − 	�̂�𝜇.… ,   𝛾𝛾_, = �̂�𝜇.,.. − 	�̂�𝜇.… , �̀�𝛿- = �̂�𝜇..-. − 	�̂�𝜇.…, 

 
(𝜏𝜏𝛾𝛾a)+, = 	�̂�𝜇+,.. − �̂�𝜇+... − �̂�𝜇.,.. + 	�̂�𝜇.…,  J𝜏𝜏𝛿𝛿bL

+-
= 	�̂�𝜇+.-. − �̂�𝜇+... − �̂�𝜇..-. + 	�̂�𝜇.…,    

 
J𝛾𝛾𝛿𝛿bL

,-
= 	�̂�𝜇.,-. − �̂�𝜇.,.. − �̂�𝜇..-. + 	�̂�𝜇.…, 

  
J𝜏𝜏𝛾𝛾𝛿𝛿b L

+,-
= 	�̂�𝜇+,-. − �̂�𝜇+,.. − �̂�𝜇+.-. − �̂�𝜇.,-. + �̂�𝜇+... + �̂�𝜇.,.. + �̂�𝜇..-. − 	�̂�𝜇.…  and   

 

𝜎𝜎_ = $L&ML!&N5O
!M5(5$/+)

.  

 
Here, 
 
�̂�𝜇…. =

∑ ∑ ∑ ∑ Q'#$%&(')
,
'-#

+
&-#

+
%-#

+
$-#

/+K
 ,   	�̂�𝜇+… =

∑ ∑ ∑ Q'#$%&(')
,
'-#

,
&-#

+
%-#

/!K
 ,   

 

�̂�𝜇.,.. =
∑ ∑ ∑ Q'#$%&(')

,
'-#

,
&-#

+
$-#

/!K
,  

 

�̂�𝜇..-. =
∑ ∑ ∑ Q'#$%&(')

,
'-#

,
%-#

+
$-#

/!K
 ,   �̂�𝜇+,.. =

∑ ∑ Q'#$%&(')
,
'-#

,
&-#

/K
,   �̂�𝜇+.-. =

∑ ∑ Q'#$%&(')
,
'-#

,
%-#

/K
, 

 

�̂�𝜇.,-. =
∑ ∑ Q'

,
'-#

,
$-# #$%&(')

/K
,   �̂�𝜇+,-. =

∑ Q'#$%&(')
,
'-#

K
,   

 
𝑚𝑚 = ∑ 𝜃𝜃.4

.0) ,   𝜃𝜃. = 1 + 𝜆𝜆𝛽𝛽.,   ∆= ∑ 𝛼𝛼.4
.0) ,  𝑁𝑁 = 3/𝑛𝑛, 
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𝐵𝐵 = 𝜆𝜆∑ ∑ ∑ ∑ 𝛼𝛼.g𝑦𝑦+,-(.) − 	�̂�𝜇+,-.h4
.0)

/
-0)

/
,0)

/
+0)  and   

 
𝐶𝐶 = ∑ ∑ ∑ ∑ 𝜃𝜃.g𝑦𝑦+,-(.) − 	�̂�𝜇+,-.h

!4
.0)

/
-0)

/
,0)

/
+0) . 

 
  
4 Hypothesis Testing 
 
The null hypotheses for testing the main effects and interactions are 
defined as follows 
 
𝐻𝐻R):	𝜏𝜏+ = 0,  𝐻𝐻R!:	𝛾𝛾, = 0, 𝐻𝐻R/:	𝛿𝛿- = 0	,  
 
𝐻𝐻RN:	(𝜏𝜏𝛾𝛾)+, = 0,  𝐻𝐻RS:	(𝜏𝜏𝛿𝛿)+- = 0,  𝐻𝐻RT:	(𝛾𝛾𝛿𝛿),- = 0,  
 
and 
 
𝐻𝐻RU:	(𝜏𝜏𝛾𝛾𝛿𝛿)+,- = 0, 
 
where 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,2,3. 
 
For testing the above null hypotheses following test statistics based on 
MML estimators are proposed 
 

𝐹𝐹V∗ =
/!K∑ 6X$

!+
$-#

!"Y!  , 𝐹𝐹L∗ =
/!K∑ 7Y%

!+
%-#

!"Y!  , 𝐹𝐹O∗ =
/!K∑ :Z&

!+
&-#

!"Y!  ,  
 

  𝐹𝐹VL∗ =
/K∑ ∑ (67[)$%

!+
%-#

+
$-#

N"Y!  ,   𝐹𝐹VO∗ =
/K∑ ∑ (6:\)$&

!+
&-#

+
$-#

N"Y!  , 𝐹𝐹LO∗ =
/K∑ ∑ (7:\ )%&

!+
&-#

+
%-#

N"Y!  , 
 

and 
𝐹𝐹VLO∗ =

K∑ ∑ ∑ (67:\ )$%&
!+

&-#
+
%-#

+
$-#

]"Y!  . 
 
Asymptotically, the null distributions of the proposed test statistics follow 
F distribution with degrees of freedoms 
(𝜈𝜈", 𝜈𝜈.), (𝜈𝜈#, 𝜈𝜈.), (𝜈𝜈%, 𝜈𝜈.), (𝜈𝜈&, 𝜈𝜈.), (𝜈𝜈', 𝜈𝜈.), (𝜈𝜈/, 𝜈𝜈.) and (𝜈𝜈0, 𝜈𝜈.), 
respectively,  
 
𝜈𝜈" = 𝜈𝜈# = 𝜈𝜈% = 2,  𝜈𝜈& = 𝜈𝜈' = 𝜈𝜈/ = 4,  𝜈𝜈0 = 8 and 𝜈𝜈. = 3%(𝑛𝑛 − 1) 

 
see Lemmas given in Karatepe (2025) and see also Çelik et al. (2015) and 
Çelik and Şenoğlu (2018) in the context of one-way ANOVA. 
 
To gain insight into how accurate these central F approximations to the 
percentage points for small sample sizes, the simulated Type I error rates 
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For testing the above null hypotheses following test statistics based on 
MML estimators are proposed 
 

𝐹𝐹V∗ =
/!K∑ 6X$

!+
$-#

!"Y!  , 𝐹𝐹L∗ =
/!K∑ 7Y%

!+
%-#

!"Y!  , 𝐹𝐹O∗ =
/!K∑ :Z&

!+
&-#

!"Y!  ,  
 

  𝐹𝐹VL∗ =
/K∑ ∑ (67[)$%

!+
%-#

+
$-#

N"Y!  ,   𝐹𝐹VO∗ =
/K∑ ∑ (6:\)$&

!+
&-#

+
$-#

N"Y!  , 𝐹𝐹LO∗ =
/K∑ ∑ (7:\ )%&

!+
&-#

+
%-#

N"Y!  , 
 

and 
𝐹𝐹VLO∗ =

K∑ ∑ ∑ (67:\ )$%&
!+

&-#
+
%-#

+
$-#

]"Y!  . 
 
Asymptotically, the null distributions of the proposed test statistics follow 
F distribution with degrees of freedoms 
(𝜈𝜈", 𝜈𝜈.), (𝜈𝜈#, 𝜈𝜈.), (𝜈𝜈%, 𝜈𝜈.), (𝜈𝜈&, 𝜈𝜈.), (𝜈𝜈', 𝜈𝜈.), (𝜈𝜈/, 𝜈𝜈.) and (𝜈𝜈0, 𝜈𝜈.), 
respectively,  
 
𝜈𝜈" = 𝜈𝜈# = 𝜈𝜈% = 2,  𝜈𝜈& = 𝜈𝜈' = 𝜈𝜈/ = 4,  𝜈𝜈0 = 8 and 𝜈𝜈. = 3%(𝑛𝑛 − 1) 

 
see Lemmas given in Karatepe (2025) and see also Çelik et al. (2015) and 
Çelik and Şenoğlu (2018) in the context of one-way ANOVA. 
 
To gain insight into how accurate these central F approximations to the 
percentage points for small sample sizes, the simulated Type I error rates 

of these tests are computed via Monte Carlo simulation study using the 
following equalities 
 
𝑃𝑃) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝐹𝐹V∗ ≥ 𝐹𝐹 (𝜈𝜈), 𝜈𝜈])|𝐻𝐻R)},  𝑃𝑃! = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝐹𝐹L∗ ≥ 𝐹𝐹 (𝜈𝜈!, 𝜈𝜈])|𝐻𝐻R!},   

𝑃𝑃/ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝐹𝐹O∗ ≥ 𝐹𝐹 (𝜈𝜈/, 𝜈𝜈])|𝐻𝐻R/},  𝑃𝑃N = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝐹𝐹VL∗ ≥ 𝐹𝐹 (𝜈𝜈N, 𝜈𝜈])|𝐻𝐻RN},   

𝑃𝑃S = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝐹𝐹VO∗ ≥ 𝐹𝐹 (𝜈𝜈S, 𝜈𝜈])|𝐻𝐻RS},  𝑃𝑃T = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝐹𝐹LO∗ ≥ 𝐹𝐹 (𝜈𝜈T, 𝜈𝜈])|𝐻𝐻RT} 

and  𝑃𝑃U = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝐹𝐹VLO∗ ≥ 𝐹𝐹 (𝜈𝜈U, 𝜈𝜈])|𝐻𝐻RU}. 

The simulated Type I error rates for the proposed tests and their 
counterparts based on LS estimates, in other words, 
 
𝐹𝐹V =

/!4∑ 6_$
!+

$-#
!"̀!  , 𝐹𝐹L =

/!4∑ 7̀%
!+

%-#

!"̀!  , 𝐹𝐹O =
/!4∑ :a&

!+
&-#

!"̀!  ,  
 
𝐹𝐹VL =

/4∑ ∑ (67b)$%
!+

%-#
+
$-#

N"̀! ,  𝐹𝐹VO =
/4 ∑ ∑ (6:c)$&

!+
&-#

+
$-#

N"̀!  , 𝐹𝐹LO =
/4∑ ∑ (7:c )%&

!+
&-#

+
%-#

N"̀!    
 
and 
𝐹𝐹VLO =

4∑ ∑ ∑ (67:c )$%&
!+

&-#
+
%-#

+
$-#

]"̀!    
 
are presented in Section 5, Table 4. Here, note that we just produce the 
simulation results for the main effect 𝐴𝐴 and interaction effects 𝐴𝐴𝐴𝐴 and 
𝐴𝐴𝐴𝐴𝐴𝐴. The results for the remaining tests were similar therefore we did not 
reproduce them for the sake of brevity, however they can be provided upon 
request from the author. Monte Carlo simulation results show that the 
simulated Type I error rates of the proposed tests are very close to the 
nominal level 𝛼𝛼 = 0.050. This indicates that the proposed test statistics 
have an approximate F distribution even for small sample sizes. 
 
5 Monte Carlo Simulation Study 
 
In this section, performances of the proposed tests and their LS based 
counterparts are compared via Monte Carlo simulation study. 
 
In this study, 

•  Without loss of generality 𝜇𝜇 and 𝜎𝜎 are taken as 0 and 1, 
respectively.  

•  The number of replicates is determined as 𝑛𝑛 =6, 8, 10. 
•  𝜆𝜆 is taken to be 0, 1, 3 and 5. 
•  All simulations are performed using 10,000 Monte Carlo runs. 

 



38  . Özgün KARATEPE, Birdal ŞENOĞLU

Before comparing the performances of the test statistics, the efficiencies of 
the MML estimators of the model parameters are compared with the 
corresponding LS estimators in the following subsection to ensure the 
integrity of the study.  
 
5.1 Efficiencies of the Estimators 
 
In this subsection, MML and LS estimators for the parameters of 33 

factorial design model are compared in terms of bias, mean squares error 
(MSE), relative efficiency (RE) and deficiency (DEF) criteria defined 
below 
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵J𝜃𝜃xL = 𝐸𝐸J𝜃𝜃x − 𝜃𝜃L,  𝑀𝑀𝑀𝑀𝐸𝐸J𝜃𝜃xL = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵!J𝜃𝜃xL + 𝑉𝑉𝐵𝐵𝑉𝑉J𝜃𝜃xL,   
 

𝑅𝑅𝐸𝐸 = def@QZ../A
def@QZ/0A

	× 	100  
 

and  𝐷𝐷𝐸𝐸𝐷𝐷J𝜃𝜃x), 𝜃𝜃x!, … , 𝜃𝜃x-L = 𝑀𝑀𝑀𝑀𝐸𝐸J𝜃𝜃x)L +𝑀𝑀𝑀𝑀𝐸𝐸J𝜃𝜃x!L +⋯+𝑀𝑀𝑀𝑀𝐸𝐸J𝜃𝜃x-L. 
 
Here, DEF is defined as the joint efficiency of the estimators 𝜃𝜃x), 𝜃𝜃x!,…, 𝜃𝜃x-. 
Simulated Bias, MSE, RE and DEF values for the LS and MML estimators 
are given in Tables 2 and 3. 
 
 
Table 2. Simulated Bias values for the LS and MML estimators. 

𝝀𝝀 = 𝟎𝟎 
n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 𝝉𝝉𝜸𝜸𝟏𝟏𝟏𝟏 𝝉𝝉𝜹𝜹𝟏𝟏𝟏𝟏 𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏 𝝉𝝉𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 

6 LS 0.0016 -0.0000 0.0032 -0.0000 -0.0000 -0.0021 0.0016 0.0016 -0.0000 
MML 0.0016 -0.0000 0.0032 -0.0000 -0.0000 -0.0021 0.0016 0.0016 -0.0000 

8 LS -0.0000 -0.0016 -0.0000 0.0000 0.0000 0.0018 0.0013 -0.0018 -0.0012 
MML -0.0000 -0.0016 -0.0000 0.0000 0.0000 0.0018 0.0013 -0.0018 -0.0012 

10 LS 0.0000 -0.0010 0.0000 -0.0021 0.0003 0.0013 0.0016 -0.0018 -0.0000 
MML 0.0000 -0.0010 0.0000 -0.0021 0.0003 0.0013 0.0016 -0.0018 -0.0000 

𝝀𝝀 = 𝟏𝟏 
n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 𝝉𝝉𝜸𝜸𝟏𝟏𝟏𝟏 𝝉𝝉𝜹𝜹𝟏𝟏𝟏𝟏 𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏 𝝉𝝉𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 

6 LS 0.0018 0.0011 0.0017 0.0000 -0.0011 0.0000 -0.0026 -0.0027 -0.0018 
MML 0.0174 0.0010 0.0017 0.0000 -0.0012 0.0000 -0.0024 -0.0026 0.0023 

8 LS 0.0006 -0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0015 -0.0000 -0.0011 
MML 0.0129 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0015 -0.0000 0.0021 

10 LS 0.0001 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0012 -0.0018 
MML 0.0102 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0012 0.0008 

𝝀𝝀 = 𝟑𝟑 
n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 𝝉𝝉𝜸𝜸𝟏𝟏𝟏𝟏 𝝉𝝉𝜹𝜹𝟏𝟏𝟏𝟏 𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏 𝝉𝝉𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 

6 LS 0.0023 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0034 -0.0024 
MML 0.0668 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0019 -0.0121 

8 LS 0.0007 0.0000 0.0000 0.0000 -0.0009 0.0000 0.0000 0.0029 -0.0011 
MML 0.0492 0.0000 0.0000 -0.0000 -0.0011 0.0000 0.0000 0.0020 -0.0076 

10 LS 0.0010 -0.0000 -0.0000 0.0000 0.0019 0.0000 0.0009 0.0000 -0.0020 
MML 0.0399 0.0000 -0.0000 0.0000 0.0014 0.0000 0.0011 0.0000 -0.0069 

𝝀𝝀 = 𝟓𝟓 
n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 𝝉𝝉𝜸𝜸𝟏𝟏𝟏𝟏 𝝉𝝉𝜹𝜹𝟏𝟏𝟏𝟏 𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏 𝝉𝝉𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 

6 LS 0.0017 -0.0016 -0.0000 0.0000 -0.0000 0.0000 0.0013 -0.0014 -0.0024 
MML 0.0970 -0.0008 -0.0000 0.0000 0.0000 0.0000 0.0005 -0.0018 -0.0278 

8 LS 0.0021 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0014 0.0019 -0.0160 
MML 0.0711 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0004 0.0014 -0.0174 

10 LS 0.0009 -0.0000 0.0017 0.0000 0.0000 0.0000 0.0011 0.0000 -0.0020 
MML 0.0553 -0.0000 0.0008 0.0000 0.0000 0.0000 0.0010 0.0000 -0.0134 
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Before comparing the performances of the test statistics, the efficiencies of 
the MML estimators of the model parameters are compared with the 
corresponding LS estimators in the following subsection to ensure the 
integrity of the study.  
 
5.1 Efficiencies of the Estimators 
 
In this subsection, MML and LS estimators for the parameters of 33 

factorial design model are compared in terms of bias, mean squares error 
(MSE), relative efficiency (RE) and deficiency (DEF) criteria defined 
below 
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵J𝜃𝜃xL = 𝐸𝐸J𝜃𝜃x − 𝜃𝜃L,  𝑀𝑀𝑀𝑀𝐸𝐸J𝜃𝜃xL = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵!J𝜃𝜃xL + 𝑉𝑉𝐵𝐵𝑉𝑉J𝜃𝜃xL,   
 

𝑅𝑅𝐸𝐸 = def@QZ../A
def@QZ/0A

	× 	100  
 

and  𝐷𝐷𝐸𝐸𝐷𝐷J𝜃𝜃x), 𝜃𝜃x!, … , 𝜃𝜃x-L = 𝑀𝑀𝑀𝑀𝐸𝐸J𝜃𝜃x)L +𝑀𝑀𝑀𝑀𝐸𝐸J𝜃𝜃x!L +⋯+𝑀𝑀𝑀𝑀𝐸𝐸J𝜃𝜃x-L. 
 
Here, DEF is defined as the joint efficiency of the estimators 𝜃𝜃x), 𝜃𝜃x!,…, 𝜃𝜃x-. 
Simulated Bias, MSE, RE and DEF values for the LS and MML estimators 
are given in Tables 2 and 3. 
 
 
Table 2. Simulated Bias values for the LS and MML estimators. 

𝝀𝝀 = 𝟎𝟎 
n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 𝝉𝝉𝜸𝜸𝟏𝟏𝟏𝟏 𝝉𝝉𝜹𝜹𝟏𝟏𝟏𝟏 𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏 𝝉𝝉𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 

6 LS 0.0016 -0.0000 0.0032 -0.0000 -0.0000 -0.0021 0.0016 0.0016 -0.0000 
MML 0.0016 -0.0000 0.0032 -0.0000 -0.0000 -0.0021 0.0016 0.0016 -0.0000 

8 LS -0.0000 -0.0016 -0.0000 0.0000 0.0000 0.0018 0.0013 -0.0018 -0.0012 
MML -0.0000 -0.0016 -0.0000 0.0000 0.0000 0.0018 0.0013 -0.0018 -0.0012 

10 LS 0.0000 -0.0010 0.0000 -0.0021 0.0003 0.0013 0.0016 -0.0018 -0.0000 
MML 0.0000 -0.0010 0.0000 -0.0021 0.0003 0.0013 0.0016 -0.0018 -0.0000 

𝝀𝝀 = 𝟏𝟏 
n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 𝝉𝝉𝜸𝜸𝟏𝟏𝟏𝟏 𝝉𝝉𝜹𝜹𝟏𝟏𝟏𝟏 𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏 𝝉𝝉𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 

6 LS 0.0018 0.0011 0.0017 0.0000 -0.0011 0.0000 -0.0026 -0.0027 -0.0018 
MML 0.0174 0.0010 0.0017 0.0000 -0.0012 0.0000 -0.0024 -0.0026 0.0023 

8 LS 0.0006 -0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0015 -0.0000 -0.0011 
MML 0.0129 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0015 -0.0000 0.0021 

10 LS 0.0001 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0012 -0.0018 
MML 0.0102 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0012 0.0008 

𝝀𝝀 = 𝟑𝟑 
n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 𝝉𝝉𝜸𝜸𝟏𝟏𝟏𝟏 𝝉𝝉𝜹𝜹𝟏𝟏𝟏𝟏 𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏 𝝉𝝉𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 

6 LS 0.0023 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0034 -0.0024 
MML 0.0668 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0019 -0.0121 

8 LS 0.0007 0.0000 0.0000 0.0000 -0.0009 0.0000 0.0000 0.0029 -0.0011 
MML 0.0492 0.0000 0.0000 -0.0000 -0.0011 0.0000 0.0000 0.0020 -0.0076 

10 LS 0.0010 -0.0000 -0.0000 0.0000 0.0019 0.0000 0.0009 0.0000 -0.0020 
MML 0.0399 0.0000 -0.0000 0.0000 0.0014 0.0000 0.0011 0.0000 -0.0069 

𝝀𝝀 = 𝟓𝟓 
n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 𝝉𝝉𝜸𝜸𝟏𝟏𝟏𝟏 𝝉𝝉𝜹𝜹𝟏𝟏𝟏𝟏 𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏 𝝉𝝉𝜸𝜸𝜹𝜹𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 

6 LS 0.0017 -0.0016 -0.0000 0.0000 -0.0000 0.0000 0.0013 -0.0014 -0.0024 
MML 0.0970 -0.0008 -0.0000 0.0000 0.0000 0.0000 0.0005 -0.0018 -0.0278 

8 LS 0.0021 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0014 0.0019 -0.0160 
MML 0.0711 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0004 0.0014 -0.0174 

10 LS 0.0009 -0.0000 0.0017 0.0000 0.0000 0.0000 0.0011 0.0000 -0.0020 
MML 0.0553 -0.0000 0.0008 0.0000 0.0000 0.0000 0.0010 0.0000 -0.0134 

 

 

Table 3: Simulated MSE, RE and DEF values for the LS and MML 
estimators  

𝝀𝝀 = 𝟎𝟎 
MSE 

n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 (𝝉𝝉𝜸𝜸)𝟏𝟏𝟏𝟏 (𝝉𝝉𝜹𝜹)𝟏𝟏𝟏𝟏 (𝜸𝜸𝜹𝜹)𝟏𝟏𝟏𝟏 (𝝉𝝉𝜸𝜸𝜹𝜹)𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 DEF 

6 LS 0.0062 0.0125 0.0124 0.0122 0.0247 0.0248 0.0248 0.0483 0.0038 0.1697 
MML 0.0062 0.0125 0.0124 0.0122 0.0247 0.0248 0.0248 0.0483 0.0038 0.1697 
RE = 100 100 100 100 100 100 100 100 100  

8 LS 0.0047 0.0091 0.0090 0.0094 0.0189 0.0185 0.0186 0.0369 0.026 0.1277 
MML 0.0047 0.0091 0.0090 0.0094 0.0189 0.0185 0.0186 0.0369 0.026 0.1277 
RE = 100 100 100 100 100 100 100 100 100  

10 LS 0.0037 0.0075 0.0075 0.0072 0.0148 0.0148 0.0146 0.0301 0.0020 0.1022 
MML 0.0037 0.0075 0.0075 0.0072 0.0148 0.0148 0.0146 0.0301 0.0020 0.1022 
RE = 100 100 100 100 100 100 100 100 100  

𝝀𝝀 = 𝟏𝟏 
MSE 

n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 (𝝉𝝉𝜸𝜸)𝟏𝟏𝟏𝟏 (𝝉𝝉𝜹𝜹)𝟏𝟏𝟏𝟏 (𝜸𝜸𝜹𝜹)𝟏𝟏𝟏𝟏 (𝝉𝝉𝜸𝜸𝜹𝜹)𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 DEF 

6 LS 0.0050 0.0085 0.0084 0.0086 0.0171 0.0173 0.0170 0.0328 0.0038 0.1185 
MML 0.0052 0.0084 0.0083 0.0085 0.0170 0.0172 0.0169 0.0326 0.0038 0.1179 
RE = 104 99 99 99 99 99 99 99 100  

8 LS 0.0037 0.0063 0.0062 0.0063 0.0125 0.0128 0.0126 0.0251 0.0027 0.0882 
MML 0.0039 0.0062 0.0062 0.0063 0.0124 0.0127 0.0125 0.0249 0.0027 0.0878 
RE = 105 98 100 100 99 99 99 99 100  

10 LS 0.0030 0.0050 0.0049 0.0050 0.0102 0.0102 0.0100 0.0202 0.0021 0.0706 
MML 0.0031 0.0049 0.0049 0.0050 0.0102 0.0101 0.0099 0.0200 0.0021 0.0702 
RE = 103 98 100 100 100 100 99 99 100  

𝝀𝝀 = 𝟑𝟑 
MSE 

n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 (𝝉𝝉𝜸𝜸)𝟏𝟏𝟏𝟏 (𝝉𝝉𝜹𝜹)𝟏𝟏𝟏𝟏 (𝜸𝜸𝜹𝜹)𝟏𝟏𝟏𝟏 (𝝉𝝉𝜸𝜸𝜹𝜹)𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 DEF 

6 LS 0.0031 0.0053 0.0052 0.0052 0.0106 0.0105 0.0107 0.0208 0.0044 0.0758 
MML 0.0071 0.0043 0.0042 0.0042 0.0087 0.0085 0.0086 0.0171 0.0040 0.0667 
RE = 229 81 81 81 82 81 80 82 91  

8 LS 0.0022 0.0040 0.0040 0.0040 0.0079 0.0080 0.0080 0.0157 0.0032 0.0570 
MML 0.0043 0.0032 0.0032 0.0033 0.0064 0.0065 0.0065 0.0127 0.0028 0.0489 
RE = 195 80 80 82 81 81 81 81 88  

10 LS 0.0018 0.0032 0.0032 0.0032 0.0062 0.0063 0.0065 0.0125 0.0025 0.0454 
MML 0.0031 0.0026 0.0025 0.0026 0.0050 0.0051 0.0052 0.0101 0.0022 0.0384 
RE = 172 81 78 81 81 81 80 81 88  

𝝀𝝀 = 𝟓𝟓 
MSE 

n  𝝁𝝁 𝝉𝝉𝟏𝟏 𝜸𝜸𝟏𝟏 𝜹𝜹𝟏𝟏 (𝝉𝝉𝜸𝜸)𝟏𝟏𝟏𝟏 (𝝉𝝉𝜹𝜹)𝟏𝟏𝟏𝟏 (𝜸𝜸𝜹𝜹)𝟏𝟏𝟏𝟏 (𝝉𝝉𝜸𝜸𝜹𝜹)𝟏𝟏𝟏𝟏𝟏𝟏 𝝈𝝈 DEF 

6 LS 0.0027 0.0049 0.0048 0.0048 0.0099 0.0095 0.0095 0.0188 0.0047 0.0696 
MML 0.0112 0.0033 0.0032 0.0032 0.0064 0.0064 0.0063 0.0127 0.0045 0.0572 
RE = 415 67 67 67 65 65 66 68 96  

8 LS 0.0020 0.0036 0.0036 0.0037 0.0071 0.0072 0.0072 0.0146 0.0035 0.0525 
MML 0.0064 0.0023 0.0023 0.0023 0.0045 0.0047 0.0045 0.0094 0.0030 0.0394 
RE = 320 64 64 62 63 63 62 64 86  

10 LS 0.0016 0.0029 0.0029 0.0029 0.0058 0.0056 0.0058 0.0117 0.0027 0.0419 
MML 0.0041 0.0018 0.0018 0.0018 0.0036 0.0036 0.0036 0.0072 0.0023 0.0298 
RE = 256 62 62 62 62 62 62 62 85  

 
 
Simulation results for parameters 𝜏𝜏", 𝛾𝛾", 𝛿𝛿" (𝜏𝜏𝛾𝛾)"", (𝜏𝜏𝛿𝛿)"", (𝛾𝛾𝛿𝛿)"", 
(𝜏𝜏𝛾𝛾𝛿𝛿)""" are presented. Simulation results corresponding to the other 
parameters are similar, therefore they are not given here for the sake of 
brevity. 
 
It can be seen from Tables 2 and 3 that biases for MML and LS estimators 
are negligible. Also, as 𝜆𝜆  increases, except for the LS estimator of the 
parameter 𝜇𝜇, the other LS estimators lose their efficiencies. Therefore, 
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MML estimators outperform LS estimators according to DEF criteria. It 
should be noted that since the SN distribution reduces to the standard 
normal distribution for 𝜆𝜆 = 0, the efficiencies of the MML and LS 
estimators are found to be equal for this case as theory says. 
 
 
5.2 Performances of the Tests 
 
In this subsection, performances of the proposed tests 𝐹𝐹V∗, 𝐹𝐹VL∗  and 𝐹𝐹VLO∗  are 
compared with the corresponding normal theory tests. Simulated Type I 
error rates for these tests are given in Table 4, while the simulated power 
values are presented in Table 5. 
 

Table 4. Simulated Type I error rates of the tests. 
 𝝀𝝀 = 𝟎𝟎  𝝀𝝀 = 𝟏𝟏 
𝒏𝒏 A AB ABC  A AB ABC 

6 𝐹𝐹  0.053 0.050 0.049 𝐹𝐹  0.048 0.044 0.053 
𝐹𝐹∗  0.053 0.050 0.049 𝐹𝐹∗  0.049 0.043 0.053 

8 𝐹𝐹 0.046 0.052 0.051 𝐹𝐹 0.051 0.053 0.048 
𝐹𝐹∗ 0.046 0.052 0.051 𝐹𝐹∗ 0.049 0.052 0.048 

10 𝐹𝐹 0.051 0.046 0.048 𝐹𝐹 0.046 0.049 0.050 
𝐹𝐹∗ 0.051 0.046 0.048 𝐹𝐹∗ 0.047 0.049 0.049 

 
 𝝀𝝀 = 𝟑𝟑  𝝀𝝀 = 𝟓𝟓 
𝒏𝒏 A AB ABC  A AB ABC 

6 𝐹𝐹  0.050 0.055 0.048 𝐹𝐹  0.054 0.054 0.052 
𝐹𝐹∗  0.048 0.054 0.046 𝐹𝐹∗  0.045 0.048 0.049 

8 𝐹𝐹 0.051 0.047 0.050 𝐹𝐹 0.051 0.051 0.052 
𝐹𝐹∗ 0.047 0.046 0.046 𝐹𝐹∗ 0.048 0.042 0.050 

10 𝐹𝐹 0.052 0.050 0.051 𝐹𝐹 0.049 0.049 0.050 
𝐹𝐹∗ 0.054 0.049 0.050 𝐹𝐹∗ 0.046 0.046 0.044 

 
 
Here, it is observed that the simulated Type I error rates of the proposed 
𝐹𝐹9∗, 𝐹𝐹9;∗  ve 𝐹𝐹9;<∗   tests based on MML estimators as well as those of the 𝐹𝐹9, 
𝐹𝐹9; ve 𝐹𝐹9;<  tests based on LS estimators, are very close to the nominal 
level 𝛼𝛼 = 0.050.  
 
It should be noted that to calculate the powers of the mentioned tests, the 
constant 𝑑𝑑 is added to and subtracted from the observations in the 
appropriate cells. By "appropriate", we mean that, for instance, when 
obtaining the powers of the test statistics 𝐹𝐹V and 𝐹𝐹V∗, constant 𝑑𝑑 is subtracted 
from the observations at the first level of factor 𝐴𝐴 and added to the 
observations at the third level of factor 𝐴𝐴. 
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MML estimators outperform LS estimators according to DEF criteria. It 
should be noted that since the SN distribution reduces to the standard 
normal distribution for 𝜆𝜆 = 0, the efficiencies of the MML and LS 
estimators are found to be equal for this case as theory says. 
 
 
5.2 Performances of the Tests 
 
In this subsection, performances of the proposed tests 𝐹𝐹V∗, 𝐹𝐹VL∗  and 𝐹𝐹VLO∗  are 
compared with the corresponding normal theory tests. Simulated Type I 
error rates for these tests are given in Table 4, while the simulated power 
values are presented in Table 5. 
 

Table 4. Simulated Type I error rates of the tests. 
 𝝀𝝀 = 𝟎𝟎  𝝀𝝀 = 𝟏𝟏 
𝒏𝒏 A AB ABC  A AB ABC 

6 𝐹𝐹  0.053 0.050 0.049 𝐹𝐹  0.048 0.044 0.053 
𝐹𝐹∗  0.053 0.050 0.049 𝐹𝐹∗  0.049 0.043 0.053 

8 𝐹𝐹 0.046 0.052 0.051 𝐹𝐹 0.051 0.053 0.048 
𝐹𝐹∗ 0.046 0.052 0.051 𝐹𝐹∗ 0.049 0.052 0.048 

10 𝐹𝐹 0.051 0.046 0.048 𝐹𝐹 0.046 0.049 0.050 
𝐹𝐹∗ 0.051 0.046 0.048 𝐹𝐹∗ 0.047 0.049 0.049 

 
 𝝀𝝀 = 𝟑𝟑  𝝀𝝀 = 𝟓𝟓 
𝒏𝒏 A AB ABC  A AB ABC 

6 𝐹𝐹  0.050 0.055 0.048 𝐹𝐹  0.054 0.054 0.052 
𝐹𝐹∗  0.048 0.054 0.046 𝐹𝐹∗  0.045 0.048 0.049 

8 𝐹𝐹 0.051 0.047 0.050 𝐹𝐹 0.051 0.051 0.052 
𝐹𝐹∗ 0.047 0.046 0.046 𝐹𝐹∗ 0.048 0.042 0.050 

10 𝐹𝐹 0.052 0.050 0.051 𝐹𝐹 0.049 0.049 0.050 
𝐹𝐹∗ 0.054 0.049 0.050 𝐹𝐹∗ 0.046 0.046 0.044 

 
 
Here, it is observed that the simulated Type I error rates of the proposed 
𝐹𝐹9∗, 𝐹𝐹9;∗  ve 𝐹𝐹9;<∗   tests based on MML estimators as well as those of the 𝐹𝐹9, 
𝐹𝐹9; ve 𝐹𝐹9;<  tests based on LS estimators, are very close to the nominal 
level 𝛼𝛼 = 0.050.  
 
It should be noted that to calculate the powers of the mentioned tests, the 
constant 𝑑𝑑 is added to and subtracted from the observations in the 
appropriate cells. By "appropriate", we mean that, for instance, when 
obtaining the powers of the test statistics 𝐹𝐹V and 𝐹𝐹V∗, constant 𝑑𝑑 is subtracted 
from the observations at the first level of factor 𝐴𝐴 and added to the 
observations at the third level of factor 𝐴𝐴. 
 
 
 

 
Table 5: Simulated power values for the 𝐹𝐹9, 𝐹𝐹9; , 𝐹𝐹9;< , 𝐹𝐹9∗, 𝐹𝐹9;∗  and 𝐹𝐹9;<∗   
tests.Table 5: Simulated power values for the 𝐹𝐹!, 𝐹𝐹!" , 𝐹𝐹!"# , 𝐹𝐹!∗, 𝐹𝐹!"∗  
and 𝐹𝐹!"#∗   tests. 

𝒏𝒏 
𝝀𝝀 = 𝟎𝟎 𝝀𝝀 = 𝟏𝟏 𝝀𝝀 = 𝟑𝟑 𝝀𝝀 = 𝟓𝟓 

𝒅𝒅 𝐹𝐹( 𝐹𝐹(∗ 𝒅𝒅 𝐹𝐹( 𝐹𝐹(∗ 𝒅𝒅 𝐹𝐹( 𝐹𝐹(∗ 𝒅𝒅 𝐹𝐹( 𝐹𝐹(∗ 

𝟔𝟔 

0.00 0.056 0.056 0.00 0.048 0.049 0.00 0.050 0.048 0.00 0.054 0.045 

0.08 0.099 0.099 0.07 0.112 0.114 0.05 0.105 0.113 0.05 0.106 0.123 

0.16 0.298 0.298 0.14 0.326 0.327 0.10 0.274 0.318 0.10 0.299 0.405 

0.24 0.583 0.583 0.21 0.643 0.645 0.15 0.559 0.639 0.15 0.589 0.770 

0.32 0.844 0.844 0.28 0.886 0.888 0.20 0.812 0.885 0.20 0.848 0.952 

0.40 0.965 0.965 0.35 0.978 0.978 0.25 0.950 0.979 0.25 0.966 0.996 

0.48 0.995 0.995 0.42 0.998 0.999 0.30 0.992 0.998 0.30 0.996 0.999 

𝟖𝟖 

0.00 0.046 0.046 0.00 0.051 0.049 0.00 0.051 0.047 0.00 0.051 0.048 

0.07 0.108 0.108 0.06 0.110 0.112 0.04 0.093 0.103 0.04 0.099 0.120 

0.14 0.293 0.293 0.12 0.318 0.319 0.08 0.239 0.279 0.08 0.267 0.371 

0.21 0.605 0.605 0.18 0.638 0.639 0.12 0.484 0.565 0.12 0.524 0.711 

0.28 0.853 0.853 0.24 0.878 0.882 0.16 0.743 0.829 0.16 0.787 0.932 

0.35 0.967 0.967 0.30 0.976 0.977 0.20 0.913 0.960 0.20 0.937 0.991 

0.42 0.997 0.997 0.36 0.997 0.997 0.24 0.981 0.994 0.24 0.989 0.999 

𝟏𝟏𝟎𝟎 

0.00 0.051 0.051 0.00 0.046 0.047 0.00 0.052 0.054 0.00 0.049 0.045 

0.06 0.092 0.092 0.05 0.106 0.106 0.04 0.104 0.118 0.03 0.083 0.098 

0.12 0.279 0.279 0.10 0.285 0.290 0.08 0.290 0.344 0.06 0.190 0.269 

0.18 0.562 0.562 0.15 0.573 0.579 0.12 0.579 0.675 0.09 0.390 0.564 

0.24 0.815 0.815 0.20 0.835 0.837 0.16 0.842 0.911 0.12 0.629 0.825 

0.30 0.958 0.958 0.25 0.958 0.960 0.20 0.967 0.990 0.15 0.826 0.955 

0.36 0.994 0.994 0.30 0.995 0.995 0.24 0.994 0.999 0.18 0.940 0.993 
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𝒏𝒏 
𝝀𝝀 = 𝟎𝟎 𝝀𝝀 = 𝟏𝟏 𝝀𝝀 = 𝟑𝟑 𝝀𝝀 = 𝟓𝟓 

𝒅𝒅 𝐹𝐹() 𝐹𝐹()∗  𝒅𝒅 𝐹𝐹() 𝐹𝐹()∗  𝒅𝒅 𝐹𝐹() 𝐹𝐹()∗  𝒅𝒅 𝐹𝐹() 𝐹𝐹()∗  

𝟔𝟔 

0.00 0.050 0.050 0.00 0.044 0.043 0.00 0.055 0.054 0.00 0.054 0.054 

0.11 0.100 0.100 0.10 0.106 0.106 0.07 0.089 0.101 0.06 0.083 0.098 

0.22 0.275 0.275 0.20 0.328 0.329 0.14 0.256 0.304 0.12 0.218 0.287 

0.33 0.573 0.573 0.30 0.679 0.680 0.21 0.558 0.649 0.18 0.447 0.618 

0.44 0.850 0.850 0.40 0.916 0.919 0.28 0.832 0.903 0.24 0.728 0.889 

0.55 0.974 0.974 0.50 0.990 0.991 0.35 0.965 0.987 0.30 0.913 0.985 

0.66 0.998 0.998 0.60 0.999 0.999 0.42 0.994 0.999 0.36 0.982 0.999 

𝟖𝟖 

0.00 0.052 0.052 0.00 0.053 0.052 0.00 0.047 0.046 0.00 0.051 0.042 

0.10 0.101 0.101 0.08 0.097 0.094 0.06 0.095 0.103 0.05 0.082 0.090 

0.20 0.301 0.301 0.16 0.285 0.289 0.12 0.256 0.308 0.10 0.198 0.279 

0.30 0.619 0.619 0.24 0.606 0.608 0.18 0.541 0.649 0.15 0.435 0.609 

0.40 0.890 0.890 0.32 0.869 0.872 0.24 0.821 0.899 0.20 0.691 0.881 

0.50 0.985 0.985 0.40 0.978 0.979 0.30 0.962 0.989 0.25 0.892 0.983 

0.60 0.999 0.999 0.48 0.998 0.998 0.36 0.995 0.999 0.30 0.976 0.999 

𝟏𝟏𝟎𝟎 

0.00 0.046 0.046 0.00 0.049 0.049 0.00 0.049 0.049 0.00 0.049 0.046 

0.09 0.108 0.108 0.07 0.097 0.097 0.05 0.085 0.093 0.04 0.074 0.084 

0.18 0.311 0.311 0.14 0.279 0.282 0.10 0.228 0.267 0.08 0.168 0.229 

0.27 0.631 0.631 0.21 0.584 0.586 0.15 0.491 0.589 0.12 0.348 0.513 

0.36 0.893 0.893 0.28 0.847 0.851 0.20 0.756 0.856 0.16 0.592 0.800 

0.45 0.985 0.985 0.35 0.972 0.974 0.25 0.931 0.974 0.20 0.809 0.957 

0.54 0.999 0.999 0.42 0.997 0.998 0.30 0.989 0.998 0.24 0.936 0.996 

𝒏𝒏 
𝝀𝝀 = 𝟎𝟎 𝝀𝝀 = 𝟏𝟏 𝝀𝝀 = 𝟑𝟑 𝝀𝝀 = 𝟓𝟓 

𝒅𝒅 𝐹𝐹()* 𝐹𝐹()*∗  𝒅𝒅 𝐹𝐹()* 𝐹𝐹()*∗  𝒅𝒅 𝐹𝐹()* 𝐹𝐹()*∗  𝒅𝒅 𝐹𝐹()* 𝐹𝐹()*∗  

𝟔𝟔 

0.00 0.049 0.049 0.00 0.053 0.053 0.00 0.048 0.046 0.00 0.052 0.049 

0.14 0.082 0.082 0.12 0.088 0.089 0.10 0.091 0.102 0.08 0.079 0.093 

0.28 0.213 0.213 0.24 0.235 0.234 0.20 0.249 0.296 0.16 0.184 0.240 

0.42 0.477 0.477 0.36 0.503 0.505 0.30 0.562 0.661 0.24 0.389 0.546 

0.56 0.774 0.774 0.48 0.806 0.810 0.40 0.853 0.920 0.32 0.682 0.853 

0.70 0.945 0.945 0.60 0.964 0.966 0.50 0.976 0.993 0.40 0.892 0.981 

0.84 0.993 0.993 0.72 0.996 0.996 0.60 0.999 0.999 0.48 0.980 0.998 

𝟖𝟖 

0.00 0.051 0.051 0.00 0.048 0.048 0.00 0.049 0.046 0.00 0.052 0.049 

0.13 0.089 0.089 0.11 0.095 0.097 0.08 0.079 0.081 0.07 0.079 0.089 

0.26 0.246 0.246 0.22 0.259 0.257 0.16 0.223 0.261 0.14 0.185 0.265 

0.39 0.554 0.554 0.33 0.570 0.571 0.24 0.491 0.589 0.21 0.424 0.597 

0.52 0.848 0.848 0.44 0.878 0.879 0.32 0.795 0.876 0.28 0.699 0.890 

0.65 0.970 0.970 0.55 0.983 0.984 0.40 0.954 0.986 0.35 0.896 0.988 

0.78 0.998 0.998 0.66 0.999 0.999 0.48 0.994 0.999 0.42 0.983 0.999 

𝟏𝟏𝟎𝟎 

0.00 0.048 0.048 0.00 0.049 0.049 0.00 0.051 0.049 0.00 0.049 0.044 

0.11 0.083 0.083 0.10 0.094 0.095 0.07 0.078 0.086 0.06 0.074 0.087 

0.22 0.224 0.224 0.20 0.277 0.276 0.14 0.213 0.251 0.12 0.170 0.253 

0.33 0.503 0.503 0.30 0.591 0.598 0.21 0.482 0.574 0.18 0.389 0.581 

0.44 0.797 0.797 0.40 0.887 0.893 0.28 0.785 0.873 0.24 0.653 0.873 

0.55 0.956 0.956 0.50 0.983 0.983 0.35 0.940 0.984 0.30 0.879 0.981 

0.66 0.997 0.997 0.60 0.999 0.999 0.42 0.991 0.999 0.36 0.972 0.999 
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𝒏𝒏 
𝝀𝝀 = 𝟎𝟎 𝝀𝝀 = 𝟏𝟏 𝝀𝝀 = 𝟑𝟑 𝝀𝝀 = 𝟓𝟓 

𝒅𝒅 𝐹𝐹() 𝐹𝐹()∗  𝒅𝒅 𝐹𝐹() 𝐹𝐹()∗  𝒅𝒅 𝐹𝐹() 𝐹𝐹()∗  𝒅𝒅 𝐹𝐹() 𝐹𝐹()∗  

𝟔𝟔 

0.00 0.050 0.050 0.00 0.044 0.043 0.00 0.055 0.054 0.00 0.054 0.054 

0.11 0.100 0.100 0.10 0.106 0.106 0.07 0.089 0.101 0.06 0.083 0.098 

0.22 0.275 0.275 0.20 0.328 0.329 0.14 0.256 0.304 0.12 0.218 0.287 

0.33 0.573 0.573 0.30 0.679 0.680 0.21 0.558 0.649 0.18 0.447 0.618 

0.44 0.850 0.850 0.40 0.916 0.919 0.28 0.832 0.903 0.24 0.728 0.889 

0.55 0.974 0.974 0.50 0.990 0.991 0.35 0.965 0.987 0.30 0.913 0.985 

0.66 0.998 0.998 0.60 0.999 0.999 0.42 0.994 0.999 0.36 0.982 0.999 

𝟖𝟖 

0.00 0.052 0.052 0.00 0.053 0.052 0.00 0.047 0.046 0.00 0.051 0.042 

0.10 0.101 0.101 0.08 0.097 0.094 0.06 0.095 0.103 0.05 0.082 0.090 

0.20 0.301 0.301 0.16 0.285 0.289 0.12 0.256 0.308 0.10 0.198 0.279 

0.30 0.619 0.619 0.24 0.606 0.608 0.18 0.541 0.649 0.15 0.435 0.609 

0.40 0.890 0.890 0.32 0.869 0.872 0.24 0.821 0.899 0.20 0.691 0.881 

0.50 0.985 0.985 0.40 0.978 0.979 0.30 0.962 0.989 0.25 0.892 0.983 

0.60 0.999 0.999 0.48 0.998 0.998 0.36 0.995 0.999 0.30 0.976 0.999 

𝟏𝟏𝟎𝟎 

0.00 0.046 0.046 0.00 0.049 0.049 0.00 0.049 0.049 0.00 0.049 0.046 

0.09 0.108 0.108 0.07 0.097 0.097 0.05 0.085 0.093 0.04 0.074 0.084 

0.18 0.311 0.311 0.14 0.279 0.282 0.10 0.228 0.267 0.08 0.168 0.229 

0.27 0.631 0.631 0.21 0.584 0.586 0.15 0.491 0.589 0.12 0.348 0.513 

0.36 0.893 0.893 0.28 0.847 0.851 0.20 0.756 0.856 0.16 0.592 0.800 

0.45 0.985 0.985 0.35 0.972 0.974 0.25 0.931 0.974 0.20 0.809 0.957 

0.54 0.999 0.999 0.42 0.997 0.998 0.30 0.989 0.998 0.24 0.936 0.996 

𝒏𝒏 
𝝀𝝀 = 𝟎𝟎 𝝀𝝀 = 𝟏𝟏 𝝀𝝀 = 𝟑𝟑 𝝀𝝀 = 𝟓𝟓 

𝒅𝒅 𝐹𝐹()* 𝐹𝐹()*∗  𝒅𝒅 𝐹𝐹()* 𝐹𝐹()*∗  𝒅𝒅 𝐹𝐹()* 𝐹𝐹()*∗  𝒅𝒅 𝐹𝐹()* 𝐹𝐹()*∗  

𝟔𝟔 

0.00 0.049 0.049 0.00 0.053 0.053 0.00 0.048 0.046 0.00 0.052 0.049 

0.14 0.082 0.082 0.12 0.088 0.089 0.10 0.091 0.102 0.08 0.079 0.093 

0.28 0.213 0.213 0.24 0.235 0.234 0.20 0.249 0.296 0.16 0.184 0.240 

0.42 0.477 0.477 0.36 0.503 0.505 0.30 0.562 0.661 0.24 0.389 0.546 

0.56 0.774 0.774 0.48 0.806 0.810 0.40 0.853 0.920 0.32 0.682 0.853 

0.70 0.945 0.945 0.60 0.964 0.966 0.50 0.976 0.993 0.40 0.892 0.981 

0.84 0.993 0.993 0.72 0.996 0.996 0.60 0.999 0.999 0.48 0.980 0.998 

𝟖𝟖 

0.00 0.051 0.051 0.00 0.048 0.048 0.00 0.049 0.046 0.00 0.052 0.049 

0.13 0.089 0.089 0.11 0.095 0.097 0.08 0.079 0.081 0.07 0.079 0.089 

0.26 0.246 0.246 0.22 0.259 0.257 0.16 0.223 0.261 0.14 0.185 0.265 

0.39 0.554 0.554 0.33 0.570 0.571 0.24 0.491 0.589 0.21 0.424 0.597 

0.52 0.848 0.848 0.44 0.878 0.879 0.32 0.795 0.876 0.28 0.699 0.890 

0.65 0.970 0.970 0.55 0.983 0.984 0.40 0.954 0.986 0.35 0.896 0.988 

0.78 0.998 0.998 0.66 0.999 0.999 0.48 0.994 0.999 0.42 0.983 0.999 

𝟏𝟏𝟎𝟎 

0.00 0.048 0.048 0.00 0.049 0.049 0.00 0.051 0.049 0.00 0.049 0.044 

0.11 0.083 0.083 0.10 0.094 0.095 0.07 0.078 0.086 0.06 0.074 0.087 

0.22 0.224 0.224 0.20 0.277 0.276 0.14 0.213 0.251 0.12 0.170 0.253 

0.33 0.503 0.503 0.30 0.591 0.598 0.21 0.482 0.574 0.18 0.389 0.581 

0.44 0.797 0.797 0.40 0.887 0.893 0.28 0.785 0.873 0.24 0.653 0.873 

0.55 0.956 0.956 0.50 0.983 0.983 0.35 0.940 0.984 0.30 0.879 0.981 

0.66 0.997 0.997 0.60 0.999 0.999 0.42 0.991 0.999 0.36 0.972 0.999 

 

 
According to the simulation results presented in Table 5, the proposed tests 
and the corresponding tests have the same power values when 𝜆𝜆 = 0, as 
expected. As the value of 𝜆𝜆 increases, the proposed tests have significantly 
higher power values than their competitors based on LS estimators for all 
𝑛𝑛 values. 
 
6 Application 
 
In this section, a simulated data set given below is used for illustrative 
purposes. The data set is generated from SN(𝜇𝜇 = 0, 𝜎𝜎 = 1, 𝜆𝜆 = 5) 
distribution with 𝑛𝑛 = 8. While generating the data set, 0.12 is subtracted 
from the observations at the first level of factor 𝐴𝐴 and added to the 
observations at the third level of factor 𝐴𝐴 to make the effect of factor 𝐴𝐴 
significant while making the effects of other factors insignificant. It is clear 
that we have 𝑁𝑁 = 3%𝑛𝑛 = 27(8) = 216 observations, see Karatepe (2025). 
 
Table 6. The simulated data set. 

𝑙𝑙 = 1 2 3 4 5 6 7 8 

𝑦𝑦+++, 0.94076 1.82402 0.45390 0.24360 0.29616 -0.00857 1.46299 1.60721 
𝑦𝑦++-, -0.07159 1.09816 0.59008 1.63085 1.59823 1.07739 0.53433 0.86774 
𝑦𝑦++., 0.52236 0.87596 0.77235 1.59143 -0.20259 0.90618 0.77860 -0.05715 
𝑦𝑦+-+, 0.28586 0.26604 0.55518 0.45987 0.78339 -0.20301 0.08271 0.05091 
𝑦𝑦+--, 0.95039 0.87465 1.48920 0.51073 0.82210 0.45923 0.47247 -0.02006 
𝑦𝑦+-., 1.82958 -0.05787 0.18501 0.28566 0.71530 0.63942 0.15379 0.72078 
𝑦𝑦+.+, -0.05228 1.39888 0.71806 0.47995 0.30788 0.40931 1.28019 0.23577 
𝑦𝑦+.-, 0.62483 -0.38798 0.25132 0.10739 -0.19233 0.81800 1.22529 0.50407 
𝑦𝑦+.., -0.24190 -0.28843 -0.40937 0.55014 2.49693 0.58843 1.67332 0.42334 
𝑦𝑦-++, 0.07271 2.63804 0.13475 1.90027 0.93597 1.49261 1.30421 0.69792 
𝑦𝑦-+-, 0.56769 2.01064 0.96159 0.15793 0.67074 0.72389 1.14254 1.12185 
𝑦𝑦-+., 0.81450 0.98101 0.73412 0.42813 1.53694 0.61090 1.44376 1.01052 
𝑦𝑦--+, 1.52959 0.88139 0.18416 0.51567 1.63791 1.20914 2.36629 1.17290 
𝑦𝑦---, 0.41243 0.79394 0.71449 -0.08624 2.41717 0.95093 0.65285 1.43707 
𝑦𝑦--., 0.34534 0.70502 0.51157 0.43643 -0.17207 0.41514 1.20468 -0.13557 
𝑦𝑦-.+, 1.39708 0.67572 1.86775 0.75874 1.15505 1.82046 0.98899 2.08457 
𝑦𝑦-.-, 0.50292 0.31110 0.11533 1.25228 0.59871 0.63260 0.71677 1.63705 
𝑦𝑦-.., 0.29561 1.70925 0.37797 0.45124 0.85836 2.01860 0.53359 0.14207 
𝑦𝑦.++, 0.90694 0.35210 0.43893 0.48337 0.09438 0.51308 3.77557 0.85741 
𝑦𝑦.+-, 1.57982 0.73708 0.00780 0.62315 1.64448 0.08713 0.80877 0.84469 
𝑦𝑦.+., 0.81798 0.25558 3.51811 0.77340 0.19627 0.42258 1.23949 0.73270 
𝑦𝑦.-+, 0.49955 0.41549 0.99641 0.61780 0.57192 1.51218 0.81318 1.66778 
𝑦𝑦.--, 0.73376 0.74204 0.93096 1.00208 1.02982 0.24257 1.54391 0.65501 
𝑦𝑦.-., 1.41587 0.19940 1.09771 1.33149 0.50863 2.10126 1.43958 1.65729 
𝑦𝑦..+, 1.81404 1.31595 0.52121 0.38060 1.99278 1.32515 1.13335 0.13158 
𝑦𝑦..-, 0.53306 0.24601 2.02633 0.74805 0.90721 -0.03169 0.21236 0.85262 
𝑦𝑦..., 1.82766 0.67857 0.58327 0.63276 1.11446 0.36983 1.77726 0.26252 
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Then the LS and MML estimates of the model parameters  
𝜏𝜏+ , 𝛾𝛾, , 𝛿𝛿- , (𝜏𝜏𝛾𝛾)+, , (𝜏𝜏𝛿𝛿)+- , (𝛾𝛾𝛿𝛿),- and (𝜏𝜏𝛾𝛾𝛿𝛿)+,-, (𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,2,3) are given in Table 
7. In addition, LS and MML estimates of the parameters 𝜇𝜇 and 𝜎𝜎 are 
obtained as follows 

 𝜇𝜇 𝜎𝜎 
LS -0.0025 1.0568 
MML  0.0861 1.0237 

 

Table 7. The LS and MML estimates of the model parameters. 
 τ" τ# τ$ γ" γ# γ$ δ" δ# δ$ 
LS -0.21091 0.10757 0.10335 0.08036 -0.04463 -0.03573 0.09835 -0.06101 -0.03734 
MML -0.20589 0.10787 0.09802 0.03488 0.00232 -0.03720 0.07906 -0.03519 -0.04388 
 (𝜏𝜏𝜏𝜏)"" (𝜏𝜏𝜏𝜏)"# (𝜏𝜏𝜏𝜏)"$ (𝜏𝜏𝜏𝜏)#" (𝜏𝜏𝜏𝜏)## (𝜏𝜏𝜏𝜏)#$ (𝜏𝜏𝜏𝜏)$" (𝜏𝜏𝜏𝜏)$# (𝜏𝜏𝜏𝜏)$$ 
LS 0.11176 -0.05580 -0.05596 -0.00836 -0.04974 0.05810 -0.10340 0.10554 -0.00214 
MML 0.08677 0.01623 -0.10300 0.02199 -0.13861 0.11662 -0.10875 0.12238 -0.01363 
 (𝜏𝜏𝜏𝜏)"" (𝜏𝜏𝜏𝜏)"# (𝜏𝜏𝜏𝜏)"$ (𝜏𝜏𝜏𝜏)#" (𝜏𝜏𝜏𝜏)## (𝜏𝜏𝜏𝜏)#$ (𝜏𝜏𝜏𝜏)$" (𝜏𝜏𝜏𝜏)$# (𝜏𝜏𝜏𝜏)$$ 
LS -0.13346 0.10738 0.02608 0.19569 -0.02019 -0.17549 -0.06222 -0.08719 0.14942 
MML -0.05142 0.08779 -0.03638 0.09804 -0.02653 -0.07151 -0.04662 -0.06126 0.10789 
 (γδ)"" (γδ)"# (γδ)"$ (γδ)#" (γδ)## (γδ)#$ (γδ)$" (γδ)$# (γδ)$$ 
LS -0.02726 0.03196 -0.00470 -0.09169 0.10347 -0.01179 0.11894 -0.13543 0.01649 
MML -0.08955 0.03525 0.05431 -0.04601 0.08188 -0.03587 0.13557 -0.11713 -0.01843 
 (𝜏𝜏𝜏𝜏𝜏𝜏)""" (𝜏𝜏𝜏𝜏𝜏𝜏)""# (𝜏𝜏𝜏𝜏𝜏𝜏)""$ (𝜏𝜏𝜏𝜏𝜏𝜏)"#" (𝜏𝜏𝜏𝜏𝜏𝜏)"## (𝜏𝜏𝜏𝜏𝜏𝜏)"#$ (𝜏𝜏𝜏𝜏𝜏𝜏)"$" (𝜏𝜏𝜏𝜏𝜏𝜏)"$# (𝜏𝜏𝜏𝜏𝜏𝜏)"$$ 
LS 0.10936 0.03180 -0.14116 -0.10105 0.03202 0.06903 -0.00831 -0.06382 0.07212 
MML 0.09590 0.02666 -0.12256 -0.13988 0.01633 0.12356 0.04398 -0.04299 -0.00099 
 (𝜏𝜏𝜏𝜏𝜏𝜏)#"" (𝜏𝜏𝜏𝜏𝜏𝜏)#"# (𝜏𝜏𝜏𝜏𝜏𝜏)#"$ (𝜏𝜏𝜏𝜏𝜏𝜏)##" (𝜏𝜏𝜏𝜏𝜏𝜏)### (𝜏𝜏𝜏𝜏𝜏𝜏)##$ (𝜏𝜏𝜏𝜏𝜏𝜏)#$" (𝜏𝜏𝜏𝜏𝜏𝜏)#$# (𝜏𝜏𝜏𝜏𝜏𝜏)#$$ 
LS -0.12360 -0.03504 0.15864 0.14727 0.05180 -0.19907 -0.02367 -0.01677 0.04044 
MML -0.17691 0.00240 0.17451 0.13074 0.00696 -0.13769 0.04618 -0.00936 -0.03682 
 (𝜏𝜏𝜏𝜏𝜏𝜏)$"" (𝜏𝜏𝜏𝜏𝜏𝜏)$"# (𝜏𝜏𝜏𝜏𝜏𝜏)$"$ (𝜏𝜏𝜏𝜏𝜏𝜏)$#" (𝜏𝜏𝜏𝜏𝜏𝜏)$## (𝜏𝜏𝜏𝜏𝜏𝜏)$#$ (𝜏𝜏𝜏𝜏𝜏𝜏)$$" (𝜏𝜏𝜏𝜏𝜏𝜏)$$# (𝜏𝜏𝜏𝜏𝜏𝜏)$$$ 
LS 0.01424 0.00324 -0.01748 -0.04622 -0.08382 0.13004 0.03198 0.08058 -0.11256 
MML 0.08101 -0.02906 -0.05195 0.00915 -0.02328 0.01414 -0.09016 0.05234 0.03782 

	

The values of the test statistics, corresponding p-values, critical values and 
degrees of freedoms for the test statistics based on LS and MML estimates 
are summarized in Table 8. Results of the analysis show that p-values for 
the 𝐹𝐹9∗ and 𝐹𝐹9 tests are smaller than the nominal level 𝛼𝛼 = 0.050, while p-
values for the other tests are much larger than 0.050 as expected. Therefore, 
the null hypothesis 𝐻𝐻@" is rejected and the other null hypotheses cannot be 
rejected. In other words, there is a significant difference between the levels 
of factor 𝐴𝐴.  
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Then the LS and MML estimates of the model parameters  
𝜏𝜏+ , 𝛾𝛾, , 𝛿𝛿- , (𝜏𝜏𝛾𝛾)+, , (𝜏𝜏𝛿𝛿)+- , (𝛾𝛾𝛿𝛿),- and (𝜏𝜏𝛾𝛾𝛿𝛿)+,-, (𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,2,3) are given in Table 
7. In addition, LS and MML estimates of the parameters 𝜇𝜇 and 𝜎𝜎 are 
obtained as follows 

 𝜇𝜇 𝜎𝜎 
LS -0.0025 1.0568 
MML  0.0861 1.0237 

 

Table 7. The LS and MML estimates of the model parameters. 
 τ" τ# τ$ γ" γ# γ$ δ" δ# δ$ 
LS -0.21091 0.10757 0.10335 0.08036 -0.04463 -0.03573 0.09835 -0.06101 -0.03734 
MML -0.20589 0.10787 0.09802 0.03488 0.00232 -0.03720 0.07906 -0.03519 -0.04388 
 (𝜏𝜏𝜏𝜏)"" (𝜏𝜏𝜏𝜏)"# (𝜏𝜏𝜏𝜏)"$ (𝜏𝜏𝜏𝜏)#" (𝜏𝜏𝜏𝜏)## (𝜏𝜏𝜏𝜏)#$ (𝜏𝜏𝜏𝜏)$" (𝜏𝜏𝜏𝜏)$# (𝜏𝜏𝜏𝜏)$$ 
LS 0.11176 -0.05580 -0.05596 -0.00836 -0.04974 0.05810 -0.10340 0.10554 -0.00214 
MML 0.08677 0.01623 -0.10300 0.02199 -0.13861 0.11662 -0.10875 0.12238 -0.01363 
 (𝜏𝜏𝜏𝜏)"" (𝜏𝜏𝜏𝜏)"# (𝜏𝜏𝜏𝜏)"$ (𝜏𝜏𝜏𝜏)#" (𝜏𝜏𝜏𝜏)## (𝜏𝜏𝜏𝜏)#$ (𝜏𝜏𝜏𝜏)$" (𝜏𝜏𝜏𝜏)$# (𝜏𝜏𝜏𝜏)$$ 
LS -0.13346 0.10738 0.02608 0.19569 -0.02019 -0.17549 -0.06222 -0.08719 0.14942 
MML -0.05142 0.08779 -0.03638 0.09804 -0.02653 -0.07151 -0.04662 -0.06126 0.10789 
 (γδ)"" (γδ)"# (γδ)"$ (γδ)#" (γδ)## (γδ)#$ (γδ)$" (γδ)$# (γδ)$$ 
LS -0.02726 0.03196 -0.00470 -0.09169 0.10347 -0.01179 0.11894 -0.13543 0.01649 
MML -0.08955 0.03525 0.05431 -0.04601 0.08188 -0.03587 0.13557 -0.11713 -0.01843 
 (𝜏𝜏𝜏𝜏𝜏𝜏)""" (𝜏𝜏𝜏𝜏𝜏𝜏)""# (𝜏𝜏𝜏𝜏𝜏𝜏)""$ (𝜏𝜏𝜏𝜏𝜏𝜏)"#" (𝜏𝜏𝜏𝜏𝜏𝜏)"## (𝜏𝜏𝜏𝜏𝜏𝜏)"#$ (𝜏𝜏𝜏𝜏𝜏𝜏)"$" (𝜏𝜏𝜏𝜏𝜏𝜏)"$# (𝜏𝜏𝜏𝜏𝜏𝜏)"$$ 
LS 0.10936 0.03180 -0.14116 -0.10105 0.03202 0.06903 -0.00831 -0.06382 0.07212 
MML 0.09590 0.02666 -0.12256 -0.13988 0.01633 0.12356 0.04398 -0.04299 -0.00099 
 (𝜏𝜏𝜏𝜏𝜏𝜏)#"" (𝜏𝜏𝜏𝜏𝜏𝜏)#"# (𝜏𝜏𝜏𝜏𝜏𝜏)#"$ (𝜏𝜏𝜏𝜏𝜏𝜏)##" (𝜏𝜏𝜏𝜏𝜏𝜏)### (𝜏𝜏𝜏𝜏𝜏𝜏)##$ (𝜏𝜏𝜏𝜏𝜏𝜏)#$" (𝜏𝜏𝜏𝜏𝜏𝜏)#$# (𝜏𝜏𝜏𝜏𝜏𝜏)#$$ 
LS -0.12360 -0.03504 0.15864 0.14727 0.05180 -0.19907 -0.02367 -0.01677 0.04044 
MML -0.17691 0.00240 0.17451 0.13074 0.00696 -0.13769 0.04618 -0.00936 -0.03682 
 (𝜏𝜏𝜏𝜏𝜏𝜏)$"" (𝜏𝜏𝜏𝜏𝜏𝜏)$"# (𝜏𝜏𝜏𝜏𝜏𝜏)$"$ (𝜏𝜏𝜏𝜏𝜏𝜏)$#" (𝜏𝜏𝜏𝜏𝜏𝜏)$## (𝜏𝜏𝜏𝜏𝜏𝜏)$#$ (𝜏𝜏𝜏𝜏𝜏𝜏)$$" (𝜏𝜏𝜏𝜏𝜏𝜏)$$# (𝜏𝜏𝜏𝜏𝜏𝜏)$$$ 
LS 0.01424 0.00324 -0.01748 -0.04622 -0.08382 0.13004 0.03198 0.08058 -0.11256 
MML 0.08101 -0.02906 -0.05195 0.00915 -0.02328 0.01414 -0.09016 0.05234 0.03782 

	

The values of the test statistics, corresponding p-values, critical values and 
degrees of freedoms for the test statistics based on LS and MML estimates 
are summarized in Table 8. Results of the analysis show that p-values for 
the 𝐹𝐹9∗ and 𝐹𝐹9 tests are smaller than the nominal level 𝛼𝛼 = 0.050, while p-
values for the other tests are much larger than 0.050 as expected. Therefore, 
the null hypothesis 𝐻𝐻@" is rejected and the other null hypotheses cannot be 
rejected. In other words, there is a significant difference between the levels 
of factor 𝐴𝐴.  

 

 

 

 

 

 

Table 8. Values of the test statistics, corresponding p-values, critical values 
and degrees of freedoms.  

 

7 Generalization to 𝒌𝒌-factors 

The results obtained in the previous sections are generalized to the 3! 
factorial design. 

The mathematical model of 3! factorial design with 𝑘𝑘 factors, each having 
three levels, is given by 

𝑦𝑦ABC…()!* = 𝜇𝜇 + 𝜏𝜏A + 𝛾𝛾B + 𝛿𝛿C +⋯+ 𝜙𝜙( + 𝜓𝜓) + 𝜈𝜈! + (𝜏𝜏𝛾𝛾)AB +⋯  

                +(𝜓𝜓𝜈𝜈))! + (𝜏𝜏𝛾𝛾𝛿𝛿)ABC +⋯+ (𝜙𝜙𝜓𝜓𝜈𝜈)()! +⋯  

                +(𝜏𝜏𝛾𝛾𝛿𝛿 …𝜙𝜙𝜓𝜓𝜈𝜈)ABC…()! + 𝜀𝜀ABC…()!*, 

𝑎𝑎, 𝑏𝑏, 𝑐𝑐 … 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,2,3; 	𝑙𝑙 = 1,… , 𝑛𝑛  

where 𝜀𝜀ABC…()!*  are independent and identically distributed SN error 
terms. 

The MML estimators for model parameters are obtained as follows 

�̂�𝜇 = 	�̂�𝜇………. − '
'∆
K
(𝜎𝜎_, 

�̂�𝜏| = 	�̂�𝜇|……… − 	�̂�𝜇………., …,   �̂�𝜈! = 	𝜇𝜇c……..𝑘𝑘. − 	𝜇𝜇c………., 

(𝜏𝜏𝜏𝜏a)|~ = 	�̂�𝜇|~…….. − �̂�𝜇|……… − �̂�𝜇.~…….. + 	�̂�𝜇………. ,…,  

J𝜓𝜓𝜓𝜓bL
,-
= �̂�𝜇.……,-. − �̂�𝜇.……,.. − �̂�𝜇….….-. + 	�̂�𝜇………., 

;𝜏𝜏𝜏𝜏𝜏𝜏B ?KLM = 	�̂�𝜇KLM……. − �̂�𝜇KL…….. − �̂�𝜇K.M……. − �̂�𝜇.LM……. + 	�̂�𝜇K……… + 	�̂�𝜇.L…….. + 	�̂�𝜇..M….... − 	�̂�𝜇………. 
,…, 

	 𝑨𝑨		 𝑩𝑩		 𝑪𝑪		 𝑨𝑨𝑩𝑩		 𝑨𝑨𝑪𝑪		 𝑩𝑩𝑪𝑪		 𝑨𝑨𝑩𝑩𝑪𝑪		
VVaalluueess		ooff		tthhee		tteesstt		ssttaattiissttiiccss 

𝑭𝑭		 5.546	 0.808	 1.229	 0.644	 1.847	 0.745	 0.492	
𝑭𝑭∗		 8.189	 0.335	 1.212	 1.688	 0.958	 1.174	 0.674	

pp--vvaalluueess		
𝑭𝑭		 0.0046	 0.4471	 0.2949	 0.6318	 0.1216174	 0.5623	 0.8609	
𝑭𝑭∗		 0.0004	 0.7155	 0.3000	 0.1545	 0.4317284	 0.3234	 0.7143	

CCrriittiiccaall		vvaalluueess		
		 3.044	 3.044	 3.044	 2.419	 2.419	 2.419	 1.988	

DDeeggrreeeess		ooff		ffrreeeeddoommss	
		 (𝜈𝜈", 𝜈𝜈#)	 (𝜈𝜈$, 𝜈𝜈#)	 (𝜈𝜈%, 𝜈𝜈#)	 (𝜈𝜈&, 𝜈𝜈#)	 (𝜈𝜈', 𝜈𝜈#)	 (𝜈𝜈(, 𝜈𝜈#)	 (𝜈𝜈), 𝜈𝜈#)	
		 (2,189)	 (2,189)	 (2,189)	 (4,189)	 (4,189)	 (4,189)	 (8,189)	
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;𝜙𝜙𝜙𝜙𝜙𝜙H?234 = 	�̂�𝜇……234. − �̂�𝜇……23.. − �̂�𝜇……2.4. − �̂�𝜇…….34. + 	�̂�𝜇……2… + 	�̂�𝜇…….3.. + 	�̂�𝜇……..4. − 	�̂�𝜇………. , 

     ⋮ 

(𝜏𝜏𝜏𝜏𝜏𝜏 …𝜙𝜙𝜙𝜙𝜙𝜙)H KLM…234 = 	�̂�𝜇KLM…234. −⋯± 	�̂�𝜇……….   and 𝜎𝜎_ = $L&ML!&N5O

!�5@5$/&A
. 

Here,  

𝐵𝐵 = 𝜆𝜆∑ ∑ ∑ …/
€0)

/
~0)

/
|0) ∑ ∑ ∑ ∑ 𝛼𝛼. U𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖(𝑙𝑙) − 	�̂�𝜇𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖.V

4
.0)

/
-0)

/
,0)

/
+0) ,  

𝐶𝐶 = ∑ ∑ ∑ …/
€0)

/
~0)

/
|0) ∑ ∑ ∑ ∑ 𝜃𝜃. U𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖(𝑙𝑙) − 	�̂�𝜇𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖.V

!
4
.0)

/
-0)

/
,0)

/
+0)   

and 𝑁𝑁 = 3!𝑛𝑛.  

Also, it should be noted that the expressions 	�̂�𝜇|………, 	�̂�𝜇|~……..,…,		�̂�𝜇|~€…….	etc.,	
are structurally analogous to those defined in earlier sections. Therefore, 
they are not given here to avoid redundancy. See Section 3 for the 
coefficients 𝛼𝛼. and 𝜃𝜃..	

The null hypotheses for testing the main effects and interactions are 
defined as follows 

𝐻𝐻R):	𝜏𝜏| = 0, …, 𝐻𝐻R-:	𝜈𝜈- = 0,  
 
𝐻𝐻R(-&)):	(𝜏𝜏𝜏𝜏)|~ = 0,…,  𝐻𝐻R(-&E):	(𝜓𝜓𝜓𝜓),- = 0,   
 
𝐻𝐻R(-&E&)):	(𝜏𝜏𝜏𝜏𝜏𝜏)|~€ = 0,…,  
 
𝐻𝐻R(-&E&Å):	(𝜙𝜙𝜓𝜓𝜓𝜓)+,- = 0  

 
                                                  ⋮ 

𝐻𝐻R‚:	(𝜏𝜏𝜏𝜏𝜏𝜏…𝜙𝜙𝜓𝜓𝜓𝜓)𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖 = 0.  
 

Here, 𝑘𝑘 denotes the number of main effects, 𝑑𝑑 = G!#I, 𝑠𝑠 = G!%I and 𝑇𝑇 =
∑ G!rI
!
rs"  
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;𝜙𝜙𝜙𝜙𝜙𝜙H?234 = 	�̂�𝜇……234. − �̂�𝜇……23.. − �̂�𝜇……2.4. − �̂�𝜇…….34. + 	�̂�𝜇……2… + 	�̂�𝜇…….3.. + 	�̂�𝜇……..4. − 	�̂�𝜇………. , 

     ⋮ 

(𝜏𝜏𝜏𝜏𝜏𝜏 …𝜙𝜙𝜙𝜙𝜙𝜙)H KLM…234 = 	�̂�𝜇KLM…234. −⋯± 	�̂�𝜇……….   and 𝜎𝜎_ = $L&ML!&N5O

!�5@5$/&A
. 

Here,  

𝐵𝐵 = 𝜆𝜆∑ ∑ ∑ …/
€0)

/
~0)

/
|0) ∑ ∑ ∑ ∑ 𝛼𝛼. U𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖(𝑙𝑙) − 	�̂�𝜇𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖.V

4
.0)

/
-0)

/
,0)

/
+0) ,  

𝐶𝐶 = ∑ ∑ ∑ …/
€0)

/
~0)

/
|0) ∑ ∑ ∑ ∑ 𝜃𝜃. U𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖(𝑙𝑙) − 	�̂�𝜇𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖.V

!
4
.0)

/
-0)

/
,0)

/
+0)   

and 𝑁𝑁 = 3!𝑛𝑛.  

Also, it should be noted that the expressions 	�̂�𝜇|………, 	�̂�𝜇|~……..,…,		�̂�𝜇|~€…….	etc.,	
are structurally analogous to those defined in earlier sections. Therefore, 
they are not given here to avoid redundancy. See Section 3 for the 
coefficients 𝛼𝛼. and 𝜃𝜃..	

The null hypotheses for testing the main effects and interactions are 
defined as follows 

𝐻𝐻R):	𝜏𝜏| = 0, …, 𝐻𝐻R-:	𝜈𝜈- = 0,  
 
𝐻𝐻R(-&)):	(𝜏𝜏𝜏𝜏)|~ = 0,…,  𝐻𝐻R(-&E):	(𝜓𝜓𝜓𝜓),- = 0,   
 
𝐻𝐻R(-&E&)):	(𝜏𝜏𝜏𝜏𝜏𝜏)|~€ = 0,…,  
 
𝐻𝐻R(-&E&Å):	(𝜙𝜙𝜓𝜓𝜓𝜓)+,- = 0  

 
                                                  ⋮ 

𝐻𝐻R‚:	(𝜏𝜏𝜏𝜏𝜏𝜏…𝜙𝜙𝜓𝜓𝜓𝜓)𝑎𝑎𝑎𝑎𝑎𝑎…𝑖𝑖𝑖𝑖𝑖𝑖 = 0.  
 

Here, 𝑘𝑘 denotes the number of main effects, 𝑑𝑑 = G!#I, 𝑠𝑠 = G!%I and 𝑇𝑇 =
∑ G!rI
!
rs"  

 
  

For testing the null hypotheses about the main and interaction effects 
following test statistics based on MML estimators are defined as follows 
 
𝐹𝐹V∗ =

/&B#K∑ 6XC!+
C-#

!"Y!  , ,…, 𝐹𝐹ƒ∗ =
/&B#K∑ „Y&

!+
&-#

!"Y!  ,  
 

𝐹𝐹VL∗ =
/&B!K∑ ∑ (67[)CD

!+
D-#

+
C-#
!!"Y!  ,…, 𝐹𝐹…ƒ∗ =

/&B!K∑ ∑ (𝜓𝜓𝜓𝜓\ )%&
!+

&-#
+
%-#

!!"Y!  , 
 
𝐹𝐹VLO∗ = /&B+K∑ ∑ ∑ (𝜏𝜏𝜏𝜏𝜏𝜏\ )CDE

!+
E-#

+
D-#

+
C-#

!+"Y!  ,…,	𝐹𝐹†…ƒ∗ =
/&B+K∑ ∑ ∑ (𝜙𝜙𝜓𝜓𝜓𝜓‡)$%&

!+
&-#

+
%-#

+
$-#

!+"Y! 		
	
	
⋮  

𝐹𝐹VLO…†…ƒ∗ =
K∑ ∑ ∑ …∑ ∑ ∑ @𝜏𝜏𝜏𝜏𝜏𝜏…𝜙𝜙𝜓𝜓𝜓𝜓‡ A+

&-#
+
%-#

+
$-#

+
E-#

+
D-#

+
C-#

!

!&"Y! 	,  
 
see Section 3 for the definition of 𝑚𝑚. 
 
8 Concluding Remarks 

In this study, MML estimators of 33 factorial design model parameters are 
obtained in detail under the assumption that the distribution of error terms 
is SN. Then, new tests have been proposed for testing the main and 
interaction effects. Efficiencies of the MML estimators and the 
performances of proposed tests are compared with the corresponding LS 
estimators and the tests based on LS estimators, respectively, via Monte 
Carlo simulation study. The results show that as the value of the skewness 
parameter increases, MML estimators become more efficient when 
compared to LS estimators. Consequently, it is observed that the proposed 
tests outperform their competitors as the degree of skewness increases. The 
results obtained in this study are generalized to 3k factorial design by 
following exactly the similar steps in 33 factorial design.  
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1 INTRODUCTION  
 
The long-tailed symmetric (LTS) distribution proposed by Tiku and 
Kumra (1985) is a plausible alternative to the well-known normal 
distribution for modeling datasets containing outliers and exhibiting 
heavy-tailed behavior. In the statistical literature, there are several studies 
considering general linear models such as one way analysis of variance 
(ANOVA), one-way analysis of covariance (ANCOVA), and regression 
analysis when the error terms follow an LTS distribution, see for example 
Kasap et al. (2016), Acitas and Senoglu (2018), Aydin and Senoglu 
(2018), and Guven et al. (2019) for details. It should be realized that the 
performance of the statistical tests used in these procedures depends on 
the accurate estimation of the underlying distribution parameters. In this 
context, this study focuses on the estimation of the location and scale 
parameters of the LTS distribution when the shape parameter is known. 
We therefore use maximum likelihood (ML) methodology because of its 
well- known theoretical properties. However, likelihood equations 
associated with the LTS distribution are nonlinear and do not admit 
closed form solutions. Traditionally, these equations are solved using 
numerical approaches. Despite their widespread use, numerical 
approaches may suffer from several drawbacks such as sensitivity to 
initial values, convergence to incorrect roots, slow convergence, or even 
failure to converge. To overcome these limitations, metaheuristic 
optimization algorithms as an alternative to traditional numerical 
approaches have recently attracted growing attention for the estimation of 
distribution parameters of interest. For example, Wang and Huang (2014) 
compared the use of particle swarm optimization (PSO) with the quasi-
Newton method and the expectation-maximization (EM) algorithms for 
ML estimation of a two-component Weibull mixture model. Jha (2016) 
employed differential evolution (DE) algorithm to obtain ML estimates 
for censored three-parameter Weibull distribution. Jiang et al. (2017) 
compared PSO, bat algorithm, and cuckoo search to estimate the Weibull, 
Rayleigh, gamma, and log-normal parameters. Yalcinkaya et al. (2018) 
proposed a novel search space for genetic algorithm (GA) constructed 
from confidence intervals through modified ML (MML) estimators in 
estimating the unknown parameters of the skew normal distribution. 
Acitas et al. (2019) used the search space developed by Yalcinkaya et al. 
(2018) for PSO algorithm for estimating the parameters of Weibull 
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distribution. Lu et al. (2019) introduced a PSO-based nonlinear least 
squares method for estimating mixed Weibull distribution parameters. 
Yalcinkaya et al. (2021) employed the GA to obtain ML estimates of the 
model parameters for multiple linear regression. Kumar (2021) compared 
DE, GA, and simulated annealing algorithms to obtain the ML estimates 
of Weibull distribution parameters for modeling the wind speed. 
Yalcinkaya et al. (2024) utilized GA-based approach to compute ML 
estimates of generalized logistic distribution parameters. Kilic and 
Senoglu (2024) used GA method for ML estimation of the unknown 
parameters of beta distribution. 

In estimating the parameters of LTS distribution, we prefer to use the 
well-known PSO and DE algorithms among the various metaheuristic 
optimization algorithms as parallel to their widespread usage in the 
literature. Since the determination of search space is one of the crucial 
components of the metaheuristic algorithms, PSO and DE algorithms are 
implemented under reduced search space (RSS) proposed by Yalçınkaya 
et al. (2018) as well as fixed search space (FSS), see also Acitas et al. 
(2019) and Kilic and Senoglu (2024) for the superiority of the RSS 
approach over FSS. Finally, an extensive Monte Carlo simulation study is 
performed to evaluate and compare the efficiencies of the PSO and DE 
algorithms in the R software environment. To maintain the integrity of 
the study and to compare the efficiencies of derivative-based numerical 
approaches with the metaheuristics algorithms considered, the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (Broyden 1965)  which is 
one of the derivative-based quasi-Newton methods is specifically used 
and incorporated into the study. 

2 MATERIAL AND METHODS  
 
This section provides a concise overview of the LTS distribution, ML 
estimation of its parameters, and the details of the metaheuristic 
algorithms (i.e., PSO and DE). 
 
2.1 The LTS Distribution 
 
Let 𝑌𝑌 be a random variable that follows the LTS distribution with the 
location parameter 𝜇𝜇, scale parameter 𝜎𝜎, and shape parameter 𝑝𝑝, denoted 
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by 𝑌𝑌~𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇, 𝜎𝜎, 𝑝𝑝). The probability density function (pdf) of 𝑌𝑌 is defined 
as follows 
 

𝑓𝑓(𝑦𝑦) = 1
𝜎𝜎√𝑘𝑘𝐵𝐵 (1

2 , 𝑝𝑝 − 1
2)

(1 +
(𝑦𝑦 − 𝜇𝜇)2

𝑘𝑘𝜎𝜎2 )
−𝑝𝑝

, 𝑦𝑦 ∈ ℝ , −∞ < 𝜇𝜇 < ∞, 𝜎𝜎 > 0, 𝑝𝑝 ≥ 2#(1)  

 
 
where B(·,·) denotes the beta function and 𝑘𝑘 = 2𝑝𝑝 − 3, see Tiku and 
Kumra (1985). The expected value, variance and kurtosis of the LTS 
distribution are given by 
 

𝐸𝐸(𝑌𝑌) = 𝜇𝜇, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝜎𝜎2, and 𝛽𝛽2 = 3(𝑝𝑝 − 3/2)/(𝑝𝑝 − 5/2), 
 
respectively.  
 
The kurtosis values of the LTS distribution corresponding to different 𝑝𝑝 
values are given in Table 1.  
  

Table 1. Kurtosis values associated with selected 𝑝𝑝 parameters  
𝑝𝑝 2.5 3 3.5 5 10 ∞ 

𝛽𝛽2 ∞ 9.0 6.0 4.2 3.4 3.0 
 
It is evident from Table 1 that LTS distribution approaches to the normal 
distribution when 𝑝𝑝 → ∞. Also,  
 

𝐿𝐿 = √𝜈𝜈
𝑘𝑘 (𝑌𝑌 − 𝜇𝜇

𝜎𝜎 ) ∼ 𝑡𝑡𝜈𝜈 

where 𝜈𝜈 = 2𝑝𝑝 − 1. 
 
 
2.2 ML Estimation 
 
Assume that 𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛 is a random sample from the 𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇, 𝜎𝜎, 𝑝𝑝) 
distribution. The corresponding log-likelihood (ln𝐿𝐿) function is as 
follows 
 

𝑙𝑙𝑙𝑙𝐿𝐿 = −𝑙𝑙𝑙𝑙𝑙𝑙 (𝜎𝜎√𝑘𝑘𝐵𝐵 (1
2 , 𝑝𝑝 − 1

2)) − 𝑝𝑝 ∑ 𝑙𝑙𝑙𝑙 (1 + (𝑦𝑦𝑖𝑖 − 𝜇𝜇)2

𝑘𝑘𝜎𝜎2 )
𝑛𝑛

𝑖𝑖=1
. #(2)  
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By taking the partial derivatives of the 𝑙𝑙𝑙𝑙𝑙𝑙 with respect to 𝜇𝜇 and 𝜎𝜎, the 
likelihood equations are obtained as follows: 
  

𝜕𝜕𝑙𝑙𝑙𝑙𝑙𝑙
𝜕𝜕𝜇𝜇 = 2𝑝𝑝

𝑘𝑘𝜎𝜎∑( 𝑧𝑧𝑖𝑖
1 + (1/𝑘𝑘)𝑧𝑧𝑖𝑖2

)
𝑛𝑛

𝑖𝑖=1
= 0#(3)  

and  
 

𝜕𝜕𝑙𝑙𝑙𝑙𝑙𝑙
𝜕𝜕𝜎𝜎 = −𝑙𝑙

𝜎𝜎 +
2𝑝𝑝
𝑘𝑘𝜎𝜎∑𝑧𝑧𝑖𝑖 (

𝑧𝑧𝑖𝑖
1 + (1/𝑘𝑘)𝑧𝑧𝑖𝑖2

)
𝑛𝑛

𝑖𝑖=1
= 0#(4)  

 
where 𝑧𝑧𝑖𝑖 = (𝑦𝑦𝑖𝑖 − 𝜇𝜇)/𝜎𝜎 for 𝑖𝑖 = 1,2, … , 𝑙𝑙.     
 
Since Equations (3) and (4) involve nonlinear functions of the unknown 
parameters, the derivation of closed-form ML estimators is not feasible. 
We therefore resort to the PSO and DE algorithms to obtain ML 
estimates of 𝜇𝜇 and 𝜎𝜎 due to the drawbacks of the derivative-based 
numerical methods mentioned earlier.  
 
2.3 Metaheuristic Algorithms  
 
This section presents the details of PSO and DE algorithms and explains 
how to determine the search space having significant influence on the 
performances of the metaheuristic algorithms. 
 
2.3.1 PSO Algorithm 
 
PSO introduced by Kennedy and Eberhart (1995) is a metaheuristic 
optimization algorithm inspired by the collective behavior of bird flocks. 
It is classified as a swarm intelligence-based optimizer. In PSO, an 
individual candidate solution is described as a particle and a collection of 
particles constitutes a swarm. These particles collaboratively explore the 
search space by updating their positions based on their past experiences 
and other particles’ experiences. Because of this ability, PSO tends to 
avoid local optima and instead converges to the global optimum by 
exploring different areas in the search space. It is widely used due to its 
advantages, including easy applicability and rapid convergence.  
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Let there be 𝑝𝑝 particles in the 𝑑𝑑-dimensional search space. Then, the 
position and velocity of 𝑖𝑖th particle are denoted as 
𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝑑𝑑) and 𝑉𝑉𝑖𝑖 = (𝑣𝑣𝑖𝑖,1, 𝑣𝑣𝑖𝑖,2, … , 𝑣𝑣𝑖𝑖,𝑑𝑑), respectively. Also, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖
(𝑘𝑘) and 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡(𝑘𝑘) represent the best position of ith particle until the 

iteration k and the particle's position having the highest fitness value 
within the swarm at the iteration 𝑘𝑘, respectively. According to the fitness 
values of each particle in the swarm, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖

(𝑘𝑘) and 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡(𝑘𝑘) are defined 
as follows 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖
(𝑘𝑘) = (𝑃𝑃𝑖𝑖,1, 𝑃𝑃𝑖𝑖,2, … , 𝑃𝑃𝑖𝑖,𝑑𝑑), 𝑖𝑖 = 1,2,… , 𝑝𝑝 

and 
𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡(𝑘𝑘) = (𝑃𝑃𝑔𝑔,1, 𝑃𝑃𝑔𝑔,2, … , 𝑃𝑃𝑔𝑔,𝑑𝑑). 

 
The velocity and position of ith particle are updated as given below 
 
𝑣𝑣𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑤𝑤. 𝑣𝑣𝑖𝑖,𝑗𝑗

(𝑘𝑘) + 𝑐𝑐1. 𝑟𝑟1. (𝑃𝑃𝑖𝑖,𝑗𝑗
(𝑘𝑘) − 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘)) + 𝑐𝑐2. 𝑟𝑟2. (𝑃𝑃𝑔𝑔,𝑗𝑗
(𝑘𝑘) − 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘)) , 𝑗𝑗 = 1,2,… , 𝑑𝑑#(5)  
and 

𝑥𝑥𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘) + 𝑣𝑣𝑖𝑖,𝑗𝑗
(𝑘𝑘+1), #(6)  

 
respectively. Here, 𝑤𝑤 is the inertia weigth, 𝑐𝑐1 and 𝑐𝑐2 are the acceleration 
coefficients, 𝑟𝑟1 and 𝑟𝑟2 are random numbers in [0,1] interval. 

𝑐𝑐1. 𝑟𝑟1. (𝑃𝑃𝑖𝑖,𝑗𝑗
(𝑘𝑘) − 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘)) is cognitive component or self-knowledge of the 

particle. 𝑐𝑐2. 𝑟𝑟2. (𝑃𝑃𝑔𝑔,𝑗𝑗
(𝑘𝑘) − 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘)) is teamwork component or social-
knowledge. Each particle’s velocity and position are updated until the 
stopping criterion is met, see also Marini and Walczak (2015) for further 
details of the PSO algorithm. 
 
2.3.2 DE Algorithm 
 
DE introduced by Storn and Price (1995) is a well-known metaheuristic 
algorithm inspired by the evolutionary process. It uses crossover and 
mutation operators similar to GA, but their implementation in DE differs 
from GA. DE algorithm iteratively searches for the global optimum by 
applying mutation, crossover, and selection operators to a population of 
candidate solutions. It is widely adopted for solving complex 
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Let there be 𝑝𝑝 particles in the 𝑑𝑑-dimensional search space. Then, the 
position and velocity of 𝑖𝑖th particle are denoted as 
𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝑑𝑑) and 𝑉𝑉𝑖𝑖 = (𝑣𝑣𝑖𝑖,1, 𝑣𝑣𝑖𝑖,2, … , 𝑣𝑣𝑖𝑖,𝑑𝑑), respectively. Also, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖
(𝑘𝑘) and 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡(𝑘𝑘) represent the best position of ith particle until the 

iteration k and the particle's position having the highest fitness value 
within the swarm at the iteration 𝑘𝑘, respectively. According to the fitness 
values of each particle in the swarm, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖

(𝑘𝑘) and 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡(𝑘𝑘) are defined 
as follows 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖
(𝑘𝑘) = (𝑃𝑃𝑖𝑖,1, 𝑃𝑃𝑖𝑖,2, … , 𝑃𝑃𝑖𝑖,𝑑𝑑), 𝑖𝑖 = 1,2,… , 𝑝𝑝 

and 
𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡(𝑘𝑘) = (𝑃𝑃𝑔𝑔,1, 𝑃𝑃𝑔𝑔,2, … , 𝑃𝑃𝑔𝑔,𝑑𝑑). 

 
The velocity and position of ith particle are updated as given below 
 
𝑣𝑣𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑤𝑤. 𝑣𝑣𝑖𝑖,𝑗𝑗

(𝑘𝑘) + 𝑐𝑐1. 𝑟𝑟1. (𝑃𝑃𝑖𝑖,𝑗𝑗
(𝑘𝑘) − 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘)) + 𝑐𝑐2. 𝑟𝑟2. (𝑃𝑃𝑔𝑔,𝑗𝑗
(𝑘𝑘) − 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘)) , 𝑗𝑗 = 1,2,… , 𝑑𝑑#(5)  
and 

𝑥𝑥𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘) + 𝑣𝑣𝑖𝑖,𝑗𝑗
(𝑘𝑘+1), #(6)  

 
respectively. Here, 𝑤𝑤 is the inertia weigth, 𝑐𝑐1 and 𝑐𝑐2 are the acceleration 
coefficients, 𝑟𝑟1 and 𝑟𝑟2 are random numbers in [0,1] interval. 

𝑐𝑐1. 𝑟𝑟1. (𝑃𝑃𝑖𝑖,𝑗𝑗
(𝑘𝑘) − 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘)) is cognitive component or self-knowledge of the 

particle. 𝑐𝑐2. 𝑟𝑟2. (𝑃𝑃𝑔𝑔,𝑗𝑗
(𝑘𝑘) − 𝑥𝑥𝑖𝑖,𝑗𝑗

(𝑘𝑘)) is teamwork component or social-
knowledge. Each particle’s velocity and position are updated until the 
stopping criterion is met, see also Marini and Walczak (2015) for further 
details of the PSO algorithm. 
 
2.3.2 DE Algorithm 
 
DE introduced by Storn and Price (1995) is a well-known metaheuristic 
algorithm inspired by the evolutionary process. It uses crossover and 
mutation operators similar to GA, but their implementation in DE differs 
from GA. DE algorithm iteratively searches for the global optimum by 
applying mutation, crossover, and selection operators to a population of 
candidate solutions. It is widely adopted for solving complex 

 
 

optimization problems due to its simplicity and strong global search 
capability. 
 
Let the population size be 𝑁𝑁 in the 𝑑𝑑-dimensional search space. Then 𝑖𝑖th 
chromosome in the population is represented by 
𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖,1 , 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝑑𝑑), 𝑖𝑖 = 1,2, . . . , 𝑁𝑁. The initial population for the DE 
algorithm is generated as follows 
 

𝑥𝑥𝑖𝑖,𝑗𝑗
(0) = 𝑙𝑙𝑏𝑏𝑖𝑖,𝑗𝑗 + 𝑟𝑟. (𝑢𝑢𝑏𝑏𝑖𝑖,𝑗𝑗 − 𝑙𝑙𝑏𝑏𝑖𝑖,𝑗𝑗), 𝑟𝑟 ∈ [0,1], 𝑖𝑖 = 1,2, … , 𝑁𝑁, 𝑗𝑗 = 1,2, … , 𝑑𝑑#(7)  

 
where 𝑙𝑙𝑏𝑏𝑖𝑖,𝑗𝑗 and 𝑢𝑢𝑏𝑏𝑖𝑖,𝑗𝑗 are the predetermined lower and upper bounds of 
the jth gene of ith chromosome. After initialization, the mutation operator 
is applied to generate the donor chromosome 𝑉𝑉𝑖𝑖

(𝑘𝑘) to be used for the 
crossover operator as follows: 
 

𝑉𝑉𝑖𝑖
(𝑘𝑘) = 𝑋𝑋𝑟𝑟1

(𝑘𝑘) + 𝐹𝐹. (𝑋𝑋𝑟𝑟2
(𝑘𝑘) − 𝑋𝑋𝑟𝑟3

(𝑘𝑘)), 𝑖𝑖 = 1,2, … , 𝑁𝑁, 𝑟𝑟1 ≠ 𝑟𝑟2 ≠ 𝑟𝑟3#(8)  
 
where, 𝐹𝐹  is the scaling factor, 𝑘𝑘 is the iteration number, and 𝑋𝑋𝑟𝑟1

(𝑘𝑘), 𝑋𝑋𝑟𝑟2
(𝑘𝑘), 

and 𝑋𝑋𝑟𝑟3
(𝑘𝑘) represent the different chromosomes randomly selected from the 

population. To increase diversity within the population, the crossover 
operator is performed on the target chromosome 𝑋𝑋𝑖𝑖 and the corresponding 
donor chromosome 𝑉𝑉𝑖𝑖 as shown below: 
 

𝑢𝑢𝑖𝑖,𝑗𝑗
(𝑘𝑘) = {

𝑣𝑣𝑖𝑖,𝑗𝑗
(𝑘𝑘), if 𝑟𝑟𝑖𝑖,𝑗𝑗 < 𝐶𝐶𝐶𝐶 𝑜𝑜𝑟𝑟 𝑗𝑗 = 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑

𝑥𝑥𝑖𝑖,𝑗𝑗
(𝑘𝑘),               otherwise

#(9)  

 
where, 𝑟𝑟𝑖𝑖,𝑗𝑗 ∈ [0,1], CR is the crossover rate and 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 is a randomly 
chosen index from {1,2, … , 𝑑𝑑}. After the crossover, the trial chromosome 
𝑈𝑈𝑖𝑖 is obtained to be used for the selection operator. Which of the target 
chromosome 𝑋𝑋𝑖𝑖 and the trial chromosome 𝑈𝑈𝑖𝑖 is passed on to the next 
generation is determined as given below 
 

𝑋𝑋𝑖𝑖
(𝑘𝑘+1) = {𝑈𝑈𝑖𝑖

(𝑘𝑘), if  𝑓𝑓(𝑈𝑈𝑖𝑖
(𝑘𝑘)) ≥ 𝑓𝑓(𝑋𝑋𝑖𝑖

(𝑘𝑘))
𝑋𝑋𝑖𝑖

(𝑘𝑘),         otherwise
#(10)  

 
where 𝑓𝑓(. ) is the objective function.  
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2.3.3 Determining the Search Space 
 
The performance of the metaheuristic optimization algorithms depends 
on their parameter settings such as the search space, initial values of the 
coefficients, and swarm (or population) size etc. In particular, the proper 
determination of the search space remarkably increases the convergence 
speed, computational efficiency and accuracy of the resulting estimates. 
In literature, a widely used approach in determining the search space is 
FSS which is a predefined interval. Since the FSS is typically determined 
based on user experience and the results of previous studies, it is prone to 
potential improper determination. Therefore, this study employs a data-
based search space known as RSS, see Yalcinkaya et al. (2018). RSS is 
determined by using asymptotic confidence intervals based on the MML 
estimators of the unknown LTS distribution parameters. Asymptotic 
confidence intervals for 𝜇𝜇 and 𝜎𝜎 are given below 
 

�̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑧𝑧𝛼𝛼 2⁄ √𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀) < 𝜇𝜇 <  �̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑧𝑧𝛼𝛼 2⁄ √𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀)#(11)  

and 

�̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑧𝑧𝛼𝛼 2⁄ √𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀) < 𝜎𝜎 <  �̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑧𝑧𝛼𝛼 2⁄ √𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀), #(12)  

 
respectively. Here, 𝑧𝑧𝛼𝛼 2⁄  is the upper 𝛼𝛼 2⁄  quantile of the standard normal 
distribution and 
 

�̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ 𝛽𝛽𝑖𝑖𝑦𝑦(𝑖𝑖)

𝑛𝑛
𝑖𝑖=1

𝑚𝑚  and �̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐵𝐵 + √𝐵𝐵2 + 4𝑛𝑛𝑛𝑛
2√𝑛𝑛(𝑛𝑛 − 1)

#(13)  

are the MML estimators of the parameters 𝜇𝜇 and 𝜎𝜎, respectively. Here, 
𝑦𝑦(𝑖𝑖) represents the ith ordered observation from the sample. Also,  
 

𝐵𝐵 = (2𝑝𝑝
𝑘𝑘 ) ∑ 𝛼𝛼𝑖𝑖(𝑦𝑦(𝑖𝑖) − �̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀)𝑛𝑛

𝑖𝑖=1 , 𝑛𝑛 = (2𝑝𝑝
𝑘𝑘 ) ∑ 𝛽𝛽𝑖𝑖(𝑦𝑦(𝑖𝑖) − �̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀)2𝑛𝑛

𝑖𝑖=1 ,   

𝑚𝑚 = ∑ 𝛽𝛽𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , 𝛼𝛼𝑖𝑖 = (2/𝑘𝑘)𝑡𝑡(𝑖𝑖)

3

(1+(1/𝑘𝑘)𝑡𝑡(𝑖𝑖)
2 )

2, 𝛽𝛽𝑖𝑖 = (1−(1/𝑘𝑘)𝑡𝑡(𝑖𝑖)
2 )

(1+(1/𝑘𝑘)𝑡𝑡(𝑖𝑖)
2 )

2   

 
and  𝑡𝑡(𝑖𝑖) = 𝐸𝐸(𝑧𝑧(𝑖𝑖)). 
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2.3.3 Determining the Search Space 
 
The performance of the metaheuristic optimization algorithms depends 
on their parameter settings such as the search space, initial values of the 
coefficients, and swarm (or population) size etc. In particular, the proper 
determination of the search space remarkably increases the convergence 
speed, computational efficiency and accuracy of the resulting estimates. 
In literature, a widely used approach in determining the search space is 
FSS which is a predefined interval. Since the FSS is typically determined 
based on user experience and the results of previous studies, it is prone to 
potential improper determination. Therefore, this study employs a data-
based search space known as RSS, see Yalcinkaya et al. (2018). RSS is 
determined by using asymptotic confidence intervals based on the MML 
estimators of the unknown LTS distribution parameters. Asymptotic 
confidence intervals for 𝜇𝜇 and 𝜎𝜎 are given below 
 

�̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑧𝑧𝛼𝛼 2⁄ √𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀) < 𝜇𝜇 <  �̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑧𝑧𝛼𝛼 2⁄ √𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀)#(11)  

and 

�̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑧𝑧𝛼𝛼 2⁄ √𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀) < 𝜎𝜎 <  �̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑧𝑧𝛼𝛼 2⁄ √𝑉𝑉𝑉𝑉�̂�𝑉(�̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀), #(12)  

 
respectively. Here, 𝑧𝑧𝛼𝛼 2⁄  is the upper 𝛼𝛼 2⁄  quantile of the standard normal 
distribution and 
 

�̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ 𝛽𝛽𝑖𝑖𝑦𝑦(𝑖𝑖)

𝑛𝑛
𝑖𝑖=1

𝑚𝑚  and �̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐵𝐵 + √𝐵𝐵2 + 4𝑛𝑛𝑛𝑛
2√𝑛𝑛(𝑛𝑛 − 1)

#(13)  

are the MML estimators of the parameters 𝜇𝜇 and 𝜎𝜎, respectively. Here, 
𝑦𝑦(𝑖𝑖) represents the ith ordered observation from the sample. Also,  
 

𝐵𝐵 = (2𝑝𝑝
𝑘𝑘 ) ∑ 𝛼𝛼𝑖𝑖(𝑦𝑦(𝑖𝑖) − �̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀)𝑛𝑛

𝑖𝑖=1 , 𝑛𝑛 = (2𝑝𝑝
𝑘𝑘 ) ∑ 𝛽𝛽𝑖𝑖(𝑦𝑦(𝑖𝑖) − �̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀)2𝑛𝑛

𝑖𝑖=1 ,   

𝑚𝑚 = ∑ 𝛽𝛽𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , 𝛼𝛼𝑖𝑖 = (2/𝑘𝑘)𝑡𝑡(𝑖𝑖)

3

(1+(1/𝑘𝑘)𝑡𝑡(𝑖𝑖)
2 )

2, 𝛽𝛽𝑖𝑖 = (1−(1/𝑘𝑘)𝑡𝑡(𝑖𝑖)
2 )

(1+(1/𝑘𝑘)𝑡𝑡(𝑖𝑖)
2 )

2   

 
and  𝑡𝑡(𝑖𝑖) = 𝐸𝐸(𝑧𝑧(𝑖𝑖)). 
 

 
 

It can be seen from the Equation (13) that �̂�𝜇𝑀𝑀𝑀𝑀𝑀𝑀 and �̂�𝜎𝑀𝑀𝑀𝑀𝑀𝑀 are explicit 
functions of the sample observations. See Tiku (1967, 1968) and Tiku 
and Kumra (1985) for details of the MML methodology and LTS 
distribution. 
 
3 MONTE CARLO SIMULATION STUDY 
 
This section presents a comprehensive Monte Carlo simulation study 
aimed at comparing the efficiencies of the ML estimators for the location 
𝜇𝜇 and scale 𝜎𝜎 parameters of the LTS distribution, assuming a known 
shape parameter. The simulation study includes four optimization 
algorithms: DE based on RSS (DE-RSS), DE based on FSS (DE-FSS), 
PSO based on RSS (PSO-RSS), and PSO based on FSS (DE-FSS). It 
should be remembered that derivative-based BFGS algorithm is also 
included into the Monte Carlo simulation study because of the reasons 
mentioned above.  
 
The shape parameter 𝑝𝑝 takes the values 2, 2.5, 3, and 5. Without loss of 
generality, the values of 𝜇𝜇 and 𝜎𝜎 are set to 0 and 1, respectively and the 
sample sizes 𝑛𝑛 are taken to be 20, 50, 100, and 250. The simulation is 
repeated 𝑀𝑀 =10,000 times for each scenario. R software environment is 
used for all computations in this section.  
 
Throughout the simulation study, the settings for DE and PSO are 
specified as follows: 
 

 Settings 

DE 𝑁𝑁 =200, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  200, 𝐶𝐶𝐶𝐶 =  0.5, 𝐹𝐹 =  0.8  

PSO 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  100, 𝑠𝑠 =  50, 𝑐𝑐1 = 𝑐𝑐2 = 5.3, 𝑤𝑤 = 1.6 

 
Here, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑠𝑠 are the number of maximum iteration and swarm size, 
respectively. Also, in both algorithms, the FSS for 𝜇𝜇 and 𝜎𝜎 is specified as 
[-1, 1] and (0, 2], respectively, to make a fair comparison with its 
counterpart RSS. As mentioned earlier, the RSS for the parameters 𝜇𝜇 and 
𝜎𝜎 is defined by using the asymptotic confidence intervals given in 
Equations (11) and (12). 
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To evaluate and compare the efficiencies of the estimators, the simulated 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, mean squared error (𝑀𝑀𝑀𝑀𝑀𝑀) and deficiency (𝐷𝐷𝑀𝑀𝐷𝐷) criteria are used. 
The simulated 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀𝑀𝑀 are calculated as follows 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(�̂�𝜃) = ∑ �̂�𝜃𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝑀𝑀⁄   

𝑀𝑀𝑀𝑀𝑀𝑀(�̂�𝜃) = 𝑉𝑉𝑀𝑀𝑉𝑉(�̂�𝜃) + (𝐵𝐵𝐵𝐵𝑀𝑀𝐵𝐵 (�̂�𝜃))
2
 

where 𝜃𝜃 represents the estimator of the parameter 𝜃𝜃. Also, mathematical 
definition of 𝐷𝐷𝑀𝑀𝐷𝐷 criteria is defined as follows 
 

𝐷𝐷𝑀𝑀𝐷𝐷(�̂�𝜇, �̂�𝜎 ) = 𝑀𝑀𝑀𝑀𝑀𝑀(�̂�𝜇) + 𝑀𝑀𝑀𝑀𝑀𝑀(�̂�𝜎). 
 
The simulated 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝐷𝐷𝑀𝑀𝐷𝐷 values for the estimators of the 
parameters 𝜇𝜇 and 𝜎𝜎 are presented in Table 2. It is worth noting that the 
simulation results for the PSO-RSS and PSO-FSS methods are almost 
equivalent to those of the corresponding DE-RSS and DE-FSS methods 
for all scenarios. Therefore, the results for the PSO-RSS and PSO-FSS 
are not included into the table to maintain brevity and avoid redundancy. 
  �̂�𝜇 �̂�𝜎  
Sample 
Size 

Method Mean MSE Mean MSE DEF 

 𝑝𝑝 = 2 

𝑀𝑀 = 20 

DE-RSS  -0.0018 0.0239 0.9727 0.0519 0.0758 
DE-FSS  -0.0016 0.0257 0.9725 0.0519 0.0776 
BFGS -0.0057 0.0258 0.9817 0.0511 0.0769 

𝑀𝑀 = 50 

DE-RSS  -0.0005 0.0091 0.9900 0.0194 0.0286 
DE-FSS  -0.0004 0.0099 0.9898 0.0194 0.0293 
BFGS -0.0055 0.0108 0.9976 0.0205 0.0314 

𝑀𝑀 = 100 

DE-RSS  -0.0007 0.0044 0.9900 0.0092 0.0136 
DE-FSS  -0.0011 0.0047 0.9895 0.0096 0.0144 
BFGS 0.0009 0.0051 0.9949 0.0095 0.0146 

𝑀𝑀 = 250 

DE-RSS  -0.0003 0.0017 1.0023 0.0040 0.0057 
DE-FSS  -0.0005 0.0019 1.0015 0.0043 0.0062 
BFGS -0.0003 0.0019 1.0030 0.0044 0.0063 

 𝑝𝑝 = 2.5 

𝑀𝑀 = 20 

DE-RSS  0.0013 0.0335 0.9758 0.0435 0.0770 
DE-FSS  0.0013 0.0360 0.9764 0.0449 0.0810 
BFGS -0.0014 0.0351 0.9772 0.0441 0.0792 

𝑀𝑀 = 50 DE-RSS  0.0026 0.0132 0.9847 0.0168 0.0301 
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𝑀𝑀 = 100 

DE-RSS  -0.0007 0.0044 0.9900 0.0092 0.0136 
DE-FSS  -0.0011 0.0047 0.9895 0.0096 0.0144 
BFGS 0.0009 0.0051 0.9949 0.0095 0.0146 

𝑀𝑀 = 250 

DE-RSS  -0.0003 0.0017 1.0023 0.0040 0.0057 
DE-FSS  -0.0005 0.0019 1.0015 0.0043 0.0062 
BFGS -0.0003 0.0019 1.0030 0.0044 0.0063 

 𝑝𝑝 = 2.5 

𝑀𝑀 = 20 

DE-RSS  0.0013 0.0335 0.9758 0.0435 0.0770 
DE-FSS  0.0013 0.0360 0.9764 0.0449 0.0810 
BFGS -0.0014 0.0351 0.9772 0.0441 0.0792 

𝑀𝑀 = 50 DE-RSS  0.0026 0.0132 0.9847 0.0168 0.0301 

 
 

DE-FSS  0.0029 0.0143 0.9849 0.0176 0.0319 
BFGS 0.0019 0.0141 0.9946 0.0173 0.0315 

𝑛𝑛 = 100 

DE-RSS  0.0023 0.0062 0.9939 0.0081 0.0144 
DE-FSS  0.0021 0.0069 0.9938 0.0083 0.0153 
BFGS -0.0025 0.0071 0.9958 0.0095 0.0166 

𝑛𝑛 = 250 

DE-RSS  0.0009 0.0023 0.9993 0.0033 0.0056 
DE-FSS  0.0009 0.0026 0.9999 0.0037 0.0063 
BFGS 0.0013 0.0030 1.0016 0.0037 0.0068 

  �̂�𝜇 �̂�𝜎  
Sample 
Size 

Method Mean MSE Mean MSE DEF 

 𝑝𝑝 = 3 

𝑛𝑛 = 20 

DE-RSS  0.0006 0.0381 0.9794 0.0398 0.0779 
DE-FSS  0.0010 0.0409 0.9796 0.0415 0.0824 
BFGS -0.0006 0.0396 0.9753 0.0409 0.0805 

𝑛𝑛 = 50 

DE-RSS  0.0054 0.0146 0.9889 0.0164 0.0310 
DE-FSS  0.0053 0.0161 0.9887 0.0174 0.0336 
BFGS -0.0015 0.0168 0.9895 0.0162 0.0331 

𝑛𝑛 = 100 

DE-RSS  -0.0033 0.0080 0.9959 0.0077 0.0158 
DE-FSS  -0.0032 0.0085 0.9959 0.0083 0.0169 
BFGS 0.0027 0.0079 0.9955 0.0078 0.0157 

𝑛𝑛 = 250 

DE-RSS  0.0018 0.0030 0.9929 0.0028 0.0059 
DE-FSS  0.0019 0.0033 0.9935 0.0031 0.0065 
BFGS -0.0035 0.0033 1.0011 0.0030 0.0063 

 𝑝𝑝 = 5 

𝑛𝑛 = 20 

DE-RSS  -0.0037 0.0443 0.9689 0.0322 0.0766 
DE-FSS  -0.0037 0.0476 0.9688 0.0338 0.0815 
BFGS 0.0001 0.0458 0.9715 0.0337 0.0795 

𝑛𝑛 = 50 

DE-RSS  0.0067 0.0173 0.9853 0.0138 0.0327 
DE-FSS  0.0065 0.0188 0.9855 0.0138 0.0336 
BFGS 0.0007 0.0179 0.9860 0.0136 0.0315 

𝑛𝑛 = 100 

DE-RSS  0.0012 0.0090 0.9932 0.0060 0.0150 
DE-FSS  0.0015 0.0101 0.9936 0.0064 0.0165 
BFGS 0.0008 0.0091 0.9948 0.0069 0.0160 

𝑛𝑛 = 250 

DE-RSS  0.0002 0.0032 0.9953 0.0023 0.0056 
DE-FSS  0.0004 0.0035 0.9951 0.0025 0.0061 
BFGS -0.0022 0.0036 1.0017 0.0029 0.0065 
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The findings obtained from Table 2 can be summarized as follows: 

 The estimators for 𝜇𝜇 and 𝜎𝜎 exhibit negligible bias in general; 
however, for the case where the sample size is 𝑛𝑛 =  20, the 
estimators of the scale parameter 𝜎𝜎 show a slight bias. 

 As expected, the MSE values of all estimators decrease with 
increasing sample size 𝑛𝑛. 

 According to the MSE and DEF criteria, the DE-RSS method 
demonstrates superior performance in estimating the μ and σ 
across the majority of the scenarios considered. A comparison 
between the DE-FSS and BFGS methods reveals that when 
𝑝𝑝 =  2, DE-FSS generally yields better performance; however, as 
the value of 𝑝𝑝 increases, the BFGS method tends to outperform 
DE-FSS. Furthermore, in general, the performance of DE-FSS 
increases as compared to BFGS when the sample size n increases, 
see for example n =250. 

 
 

 
4 APPLICATION 
 
A simulated data set consisting of randomly generated 𝑛𝑛 =100 
observations from 𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇 = 0, 𝜎𝜎 = 1, 𝑝𝑝 = 2.5) distribution is used to 
illustrate the implementation of the DE-RSS method which outperformed 
competing methods. The descriptive statistics of the simulated data are 
provided in Table 3. 

 
Table 3. The descriptive statistics for the simulated data 

n Min Max Mean Median Variance 
100 -3.3892 3.8558 0.0673 -0.0200 1.2186 

 
As a first step, the RSS is obtained as (−0.1666,0.1686) and 
(0.7947,1.2289) for 𝜇𝜇 and 𝜎𝜎, respectively. By incorporating RSS into the 
DE algorithm, the ML estimates of the unknown parameters are obtained 
as −0.041 and 1.0046, respectively. Then, the Kolmogorov–Smirnov (K-
S) test is employed to assess whether the distribution of the data set 
follows an LTS distribution with parameters 𝜇𝜇 =  −0.041, 𝜎𝜎 =  1.0046, 
and 𝑝𝑝 = 2.5. The p-value obtained from the K-S test is 0.9996. Since this 
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value exceeds the predefined significance level of 𝛼𝛼 = 0.05, the null 
hypothesis 

𝐻𝐻0: Data set follows an LTS distribution with parameters 𝜇𝜇 =
−0.041, 𝜎𝜎 = 1.0046, and p=2.5  
 

can not be rejected. It is concluded that the data set follows an LTS 
distribution with the specified parameter values. This is further supported 
by the LTS Q-Q plot (see Figure 2), which demonstrates that the 
observations are closely aligned along a straight line.  

 
Figure 2. LTS Q-Q plot of the data. 

 

Finally, 𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇 = −0.041, 𝜎𝜎 = 1.0046, 𝑝𝑝 =  2.5) is fitted to the 
histogram of the data set, see Figure 3.  

 

Figure 3. Histogram of the data and the fitted density. 
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It is apparent that 𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇 = −0.041, 𝜎𝜎 = 1.0046, 𝑝𝑝 =  2.5) models the 
data set accurately. This further demonstrates the strong modeling 
capability of the LTS distribution when its unknown parameters are 
estimated via ML using the DE-RSS approach. 

 
5 CONCLUSION 
 
This study focuses on obtaining the ML estimates of the location (𝜇𝜇) and 
scale (𝜎𝜎) parameters of the LTS distribution under the assumption that 
the shape parameter (𝑝𝑝) is known. For the estimation of the unknown 
parameters, it is employed well-known metaheuristics algorithms DE and 
PSO, along with derivative-based BFGS method. Furthermore, the search 
spaces for the DE and PSO algorithms are determined using two different 
approaches, namely RSS and FSS. The performances of the metaheuristic 
algorithms and BFGS are compared through a simulation study. The 
simulation study results indicate that DE-RSS generally show better 
performance compared to its rivals. The implementation of the DE-RSS 
method which outperformed competing methods is illustrated using a 
simulated data set. As a result, it can be concluded that metaheuristic 
algorithms DE and PSO have superior performance than the derivative-
based BFGS in the context of ML estimation for the unknown LTS 
parameters, especially when the search space is appropriately determined. 
In our case, RSS is used as a proper search space. 
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Preface 

Topology studies fundamental spatial properties preserved under 

continuous de- formations—such as connectedness, compactness, and 

convergence—independent of precise distances or angles; this chapter 

explores the transformative com- binatorial framework of binary quasi-

metrics, pioneered by Ercan and Vural, which encodes topological 

structures on finite sets into families of 0-1 matri- ces, enabling powerful 

enumeration techniques and revealing deep connections between 

continuous spaces and discrete combinatorics, while developing both 

theoretical foundations and practical counting methods illustrated through 

ex- tensive examples that demonstrate how every topology corresponds to 

matrix patterns, continuous functions to matrix operations, and 

topological generation to combinatorial enumeration, ultimately 

providing new insights into the super- exponential growth of topological 

spaces and their applications across physics, computer science, and 

algebraic geometry. 

1 Historical Development 

The systematic enumeration of topological spaces represents one of 

combina- torics’ most intricate challenges, blending set theory, lattice 

theory, and alge- braic structures into a rich tapestry of mathematical 

discovery. This journey began in earnest during the mid-20th century 

when mathematicians first seri- ously considered the combinatorial 

complexity of topological structures. 

The Foundational Period (1940s-1960s) 

The quest originated not with topology itself, but with related 

combinatorial structures: 
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convergence—independent of precise distances or angles; this chapter 

explores the transformative com- binatorial framework of binary quasi-

metrics, pioneered by Ercan and Vural, which encodes topological 

structures on finite sets into families of 0-1 matri- ces, enabling powerful 

enumeration techniques and revealing deep connections between 

continuous spaces and discrete combinatorics, while developing both 

theoretical foundations and practical counting methods illustrated through 

ex- tensive examples that demonstrate how every topology corresponds to 

matrix patterns, continuous functions to matrix operations, and 

topological generation to combinatorial enumeration, ultimately 

providing new insights into the super- exponential growth of topological 

spaces and their applications across physics, computer science, and 

algebraic geometry. 

1 Historical Development 

The systematic enumeration of topological spaces represents one of 

combina- torics’ most intricate challenges, blending set theory, lattice 

theory, and alge- braic structures into a rich tapestry of mathematical 

discovery. This journey began in earnest during the mid-20th century 

when mathematicians first seri- ously considered the combinatorial 

complexity of topological structures. 

The Foundational Period (1940s-1960s) 

The quest originated not with topology itself, but with related 

combinatorial structures: 

• 1942: Garrett Birkhoff’s lattice theory work first hinted at 

topological enumeration through his analysis of closure 

operators 

• 1950: Oystein Ore published the first connection between 

topologies and preorders, recognizing that every topology 

induces a specialization order 

• 1960: Richard Stanley established the fundamental 

relationship between topologies and quasi-orders, proving 

they share the same enumeration sequence 

 

The true breakthrough came in 1966 when V. Krishnamurthy published 

his seminal paper On the Number of Topologies on a Finite Set in the 

American Mathematical Monthly. Krishnamurthy's approach was 

revolutionary for its time. 

Krishnamurthy achieved this by: 

1. Observing that topologies correspond to families of closed sets 

2. Noticing that closed sets must be closed under arbitrary 

intersections and finite unions 

3. Developing a matrix representation where each column indicates 

set containment 

Despite this breakthrough, actual enumeration remained computationally 

infeasible beyond 𝑛𝑛 = 4. The 29 topologies for 𝑛𝑛 = 3 were known, but 

confirming the 355 topologies for 𝑛𝑛 = 4 required extensive hand 

calculation and was errorprone. 

Yet fundamental challenges persisted: 
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 No closed-form formula for 𝑇𝑇(𝑛𝑛) existed 

 The best bounds (𝑂𝑂(2𝑛𝑛2/𝑛𝑛!)) remained imprecise 

 Matrix representations were high-dimensional and inefficient 

The Quasi-Metric Revolution (2010s-Present) 

The field transformed dramatically in 2019 when Z. Ercan and M. Vural 

published their landmark paper All Topologies Come From a Family of 

0-1-valued Quasimetrics. Their breakthrough consisted of three 

fundamental insights: 

Theorem 1.1 (Ercan-Vural Representation). For any topology 𝜏𝜏 on 𝑋𝑋, 

there exists a family of binary quasi-metrics {𝑑𝑑𝑈𝑈}𝑈𝑈∈𝜏𝜏 where: 

𝑑𝑑𝑈𝑈(𝑥𝑥, 𝑦𝑦) = 𝜒𝜒𝑈𝑈(𝑥𝑥)𝜒𝜒𝑈𝑈𝑐𝑐(𝑦𝑦) 

that generates exactly 𝜏𝜏. 

This representation had profound implications: 

1. Topological generation reduced to matrix operations 

2. Continuous functions corresponded to matrix homomorphisms 

3. Topological products translated to tensor products 

Vural's subsequent work established powerful combinatorial tools: 

Theorem 1.2. For 𝑛𝑛 > 2 : 

𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2−𝑛𝑛 − 2𝑛𝑛2−𝑛𝑛−3 

The proof strategy featured innovative concepts: 

 Testing matrices that validate triangle inequalities 
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 The best bounds (𝑂𝑂(2𝑛𝑛2/𝑛𝑛!)) remained imprecise 

 Matrix representations were high-dimensional and inefficient 

The Quasi-Metric Revolution (2010s-Present) 

The field transformed dramatically in 2019 when Z. Ercan and M. Vural 

published their landmark paper All Topologies Come From a Family of 

0-1-valued Quasimetrics. Their breakthrough consisted of three 

fundamental insights: 

Theorem 1.1 (Ercan-Vural Representation). For any topology 𝜏𝜏 on 𝑋𝑋, 

there exists a family of binary quasi-metrics {𝑑𝑑𝑈𝑈}𝑈𝑈∈𝜏𝜏 where: 

𝑑𝑑𝑈𝑈(𝑥𝑥, 𝑦𝑦) = 𝜒𝜒𝑈𝑈(𝑥𝑥)𝜒𝜒𝑈𝑈𝑐𝑐(𝑦𝑦) 

that generates exactly 𝜏𝜏. 

This representation had profound implications: 

1. Topological generation reduced to matrix operations 

2. Continuous functions corresponded to matrix homomorphisms 

3. Topological products translated to tensor products 

Vural's subsequent work established powerful combinatorial tools: 

Theorem 1.2. For 𝑛𝑛 > 2 : 

𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2−𝑛𝑛 − 2𝑛𝑛2−𝑛𝑛−3 

The proof strategy featured innovative concepts: 

 Testing matrices that validate triangle inequalities 

 Pivot triplets detecting "unwelcome situations" 

 Quasi-metric algebras with ⋄ operations 

The historical journey reveals a fascinating evolution: from Birkhoff's 

abstract lattices to Krishnamurthy's set-theoretic approach, through 

computational combinatorics, arriving at Ercan and Vural's elegant 

matrix representation. This progression demonstrates mathematics' 

characteristic interplay between abstract theory and concrete 

computation, where each advance illuminates previously hidden 

structures. 

2 Foundations of Topology 

Definition 2.1 (Topology). A topology on a set 𝑋𝑋 is a collection 𝜏𝜏 ⊆
𝒫𝒫(𝑋𝑋) satisfying: 

1. ∅, 𝑋𝑋 ∈ 𝜏𝜏 

2. ⋃𝑖𝑖∈𝐼𝐼 𝑈𝑈𝑖𝑖 ∈ 𝜏𝜏 for any {𝑈𝑈𝑖𝑖}𝑖𝑖∈𝐼𝐼 ⊆ 𝜏𝜏 

3. ⋂𝑖𝑖=1
𝑛𝑛  𝑈𝑈𝑖𝑖 ∈ 𝜏𝜏 for any finite {𝑈𝑈𝑖𝑖}𝑖𝑖=1𝑛𝑛 ⊆ 𝜏𝜏 

Elements of 𝜏𝜏 are called open sets. 

Definition 2.2 (Continuous Function). A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏𝑋𝑋) → (𝑌𝑌, 𝜏𝜏𝑌𝑌) is 

continuous if 𝑓𝑓−1(𝑉𝑉) is open in 𝑋𝑋 for every open 𝑉𝑉 in 𝑌𝑌. 

3 Bases and Subbases 

Definition 3.1 (Base). A collection ℬ ⊆ 𝒫𝒫(𝑋𝑋) is a base for topology 𝜏𝜏 if: 

1. ∀𝑥𝑥 ∈ 𝑋𝑋, ∃𝐵𝐵 ∈ ℬ: 𝑥𝑥 ∈ 𝐵𝐵 

2. ∀𝐵𝐵1, 𝐵𝐵2 ∈ ℬ, ∀𝑥𝑥 ∈ 𝐵𝐵1 ∩ 𝐵𝐵2, ∃𝐵𝐵3 ∈ ℬ: 𝑥𝑥 ∈ 𝐵𝐵3 ⊆ 𝐵𝐵1 ∩ 𝐵𝐵2 

The topology 𝜏𝜏 consists of all unions of base elements. 

Example 3.2 (Standard Topology on ℝ ). The collection ℬ = {(𝑎𝑎, 𝑏𝑏) ∣
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𝑎𝑎 < 𝑏𝑏} is a base. The open interval (0,1) is a base element, while [0,1) is 

not open. 

Definition 3.3 (Subbase). A collection 𝒮𝒮 ⊆ 𝒫𝒫(𝑋𝑋) is a subbase if ⋃𝑆𝑆∈𝒮𝒮 𝑆𝑆 =
𝑋𝑋. The generated topology is the smallest topology containing 𝒮𝒮, with 

base formed by finite intersections of subbase elements. 

Example 3.4 (Product Topology Subbase). For 𝑋𝑋 × 𝑌𝑌, the subbase is 

{𝜋𝜋𝑋𝑋
−1(𝑈𝑈), 𝜋𝜋𝑌𝑌

−1(𝑉𝑉) ∣ 𝑈𝑈 ⊆ 𝑋𝑋, 𝑉𝑉 ⊆ 𝑌𝑌 open }. 

4 Quasi-Metrics and Topological Structures 

Definition 4.1 (Quasi-Metric). A quasi-metric on 𝑋𝑋 is 𝑑𝑑: 𝑋𝑋 × 𝑋𝑋 → [0, ∞) 

satisfying: 

1. 𝑑𝑑(𝑥𝑥, 𝑥𝑥) = 0 ∀𝑥𝑥 ∈ 𝑋𝑋 

2. 𝑑𝑑(𝑥𝑥, 𝑧𝑧) ≤ 𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧) ∀𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 

Remark 4.2. Quasi-metrics generalize metrics by relaxing symmetry and 

separation: 

 May have 𝑑𝑑(𝑥𝑥, 𝑦𝑦) ≠ 𝑑𝑑(𝑦𝑦, 𝑥𝑥) 

 𝑑𝑑(𝑥𝑥, 𝑦𝑦) = 0 ⇏ 𝑥𝑥 = 𝑦𝑦 

Example 4.3 (Taxicab Geometry Variant). On ℝ2, define 

𝑑𝑑((𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2)) = max(|𝑥𝑥1 − 𝑥𝑥2|, 0) + |𝑦𝑦1 − 𝑦𝑦2|. This is 

asymmetric in 𝑥𝑥-coordinate. 

Theorem 4.4 (Quasi-Metric Topology). Every quasi-metric 𝑑𝑑 induces a 

topology with base: 

ℬ = {𝐵𝐵𝑑𝑑(𝑥𝑥, 𝜖𝜖) ∣ 𝑥𝑥 ∈ 𝑋𝑋, 𝜖𝜖 > 0} 

where 𝐵𝐵𝑑𝑑(𝑥𝑥, 𝜖𝜖) = {𝑦𝑦 ∈ 𝑋𝑋 ∣ 𝑑𝑑(𝑥𝑥, 𝑦𝑦) < 𝜖𝜖}. 



International Studies in Science and Mathematics - June 2025 73

𝑎𝑎 < 𝑏𝑏} is a base. The open interval (0,1) is a base element, while [0,1) is 

not open. 

Definition 3.3 (Subbase). A collection 𝒮𝒮 ⊆ 𝒫𝒫(𝑋𝑋) is a subbase if ⋃𝑆𝑆∈𝒮𝒮 𝑆𝑆 =
𝑋𝑋. The generated topology is the smallest topology containing 𝒮𝒮, with 

base formed by finite intersections of subbase elements. 

Example 3.4 (Product Topology Subbase). For 𝑋𝑋 × 𝑌𝑌, the subbase is 

{𝜋𝜋𝑋𝑋
−1(𝑈𝑈), 𝜋𝜋𝑌𝑌

−1(𝑉𝑉) ∣ 𝑈𝑈 ⊆ 𝑋𝑋, 𝑉𝑉 ⊆ 𝑌𝑌 open }. 

4 Quasi-Metrics and Topological Structures 

Definition 4.1 (Quasi-Metric). A quasi-metric on 𝑋𝑋 is 𝑑𝑑: 𝑋𝑋 × 𝑋𝑋 → [0, ∞) 

satisfying: 

1. 𝑑𝑑(𝑥𝑥, 𝑥𝑥) = 0 ∀𝑥𝑥 ∈ 𝑋𝑋 

2. 𝑑𝑑(𝑥𝑥, 𝑧𝑧) ≤ 𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧) ∀𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 

Remark 4.2. Quasi-metrics generalize metrics by relaxing symmetry and 
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 May have 𝑑𝑑(𝑥𝑥, 𝑦𝑦) ≠ 𝑑𝑑(𝑦𝑦, 𝑥𝑥) 

 𝑑𝑑(𝑥𝑥, 𝑦𝑦) = 0 ⇏ 𝑥𝑥 = 𝑦𝑦 

Example 4.3 (Taxicab Geometry Variant). On ℝ2, define 

𝑑𝑑((𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2)) = max(|𝑥𝑥1 − 𝑥𝑥2|, 0) + |𝑦𝑦1 − 𝑦𝑦2|. This is 

asymmetric in 𝑥𝑥-coordinate. 

Theorem 4.4 (Quasi-Metric Topology). Every quasi-metric 𝑑𝑑 induces a 

topology with base: 

ℬ = {𝐵𝐵𝑑𝑑(𝑥𝑥, 𝜖𝜖) ∣ 𝑥𝑥 ∈ 𝑋𝑋, 𝜖𝜖 > 0} 

where 𝐵𝐵𝑑𝑑(𝑥𝑥, 𝜖𝜖) = {𝑦𝑦 ∈ 𝑋𝑋 ∣ 𝑑𝑑(𝑥𝑥, 𝑦𝑦) < 𝜖𝜖}. 

5 Binary Quasi-Metrics and Topology 

Definition 5.1 (0-1-Valued Generalized Quasi-Metric). A family 𝑑𝑑: 𝑋𝑋 ×
𝑋𝑋 → {0,1}𝐼𝐼 where each 𝑑𝑑𝑖𝑖(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑(𝑥𝑥, 𝑦𝑦)(𝑖𝑖) satisfies: 

1. 𝑑𝑑𝑖𝑖(𝑥𝑥, 𝑥𝑥) = 0 

2. 𝑑𝑑𝑖𝑖(𝑥𝑥, 𝑧𝑧) ≤ 𝑑𝑑𝑖𝑖(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑𝑖𝑖(𝑦𝑦, 𝑧𝑧) 

The induced topology has 𝑈𝑈 ⊆ 𝑋𝑋 open if: 

∀𝑥𝑥 ∈ 𝑈𝑈, ∃ finite 𝐽𝐽 ⊆ 𝐼𝐼: ⋂  
𝑖𝑖∈𝐽𝐽

{𝑦𝑦 ∣ 𝑑𝑑𝑖𝑖(𝑥𝑥, 𝑦𝑦) = 0} ⊆ 𝑈𝑈 

Theorem 5.2 (Ercan-Vural Representation). For any topology 𝜏𝜏 on 𝑋𝑋, 

there exists 𝐼𝐼 = 𝜏𝜏 and: 

𝑑𝑑𝑈𝑈(𝑥𝑥, 𝑦𝑦) = {0 𝑥𝑥 ∈ 𝑈𝑈 ⇒ 𝑦𝑦 ∈ 𝑈𝑈
1 𝑥𝑥 ∈ 𝑈𝑈 and 𝑦𝑦 ∉ 𝑈𝑈 

such that 𝜏𝜏 is exactly the topology generated by (𝑑𝑑𝑈𝑈)𝑈𝑈∈𝜏𝜏. 

Example 5.3 (Discrete Topology Representation). For 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏} with 

discrete topology 𝜏𝜏 = {∅, {𝑎𝑎}, {𝑏𝑏}, 𝑋𝑋} : 

𝑑𝑑{𝑎𝑎} = (0 1
0 0)

𝑑𝑑{𝑏𝑏} = (0 0
1 0)

 

The topology is generated by these two matrices. 

6 Matrix Representation for Finite Topologies 

Definition 6.1 (Related Matrix). For 𝑈𝑈 ∈ 𝜏𝜏, the related matrix 𝑀𝑀𝑈𝑈 has 

entries: 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑈𝑈(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖) = 𝜒𝜒𝑈𝑈(𝑥𝑥𝑖𝑖) ⋅ 𝜒𝜒𝑈𝑈𝑐𝑐(𝑥𝑥𝑖𝑖) 
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Proposition 6.2 (Matrix Characterization). An 𝑛𝑛 × 𝑛𝑛 matrix 𝑀𝑀 = [𝑎𝑎𝑖𝑖𝑖𝑖] 
with 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1} represents a quasi-metric iff: 

1. 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 ∀𝑖𝑖 

2. 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 and 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 ⇒ 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 

Example 6.3 (Topology Matrices for 𝑛𝑛 = 3 ). For 𝑋𝑋 = {1,2,3} with 

topology 𝜏𝜏 = {∅, {1}, {1,2}, 𝑋𝑋} : 

𝑀𝑀{1} = (
0 1 1
0 0 0
0 0 0

)

𝑀𝑀{1,2} = (
0 0 1
0 0 1
0 0 0

)
 

The topology is generated by these matrices. 

Theorem 6.4 (Uniqueness). Distinct non-trivial open sets produce distinct 

related matrices. Only ∅ and 𝑋𝑋 both map to the zero matrix. 

7 Combinatorial Enumeration of Topologies 

Theorem 7.1 (Krishnamurthy's Bound). The number 𝑇𝑇(𝑛𝑛) of topologies 

on 𝑛𝑛 elements satisfies: 

𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2−𝑛𝑛−1 

Theorem 7.2 (Vural's Improved Bound). For 𝑛𝑛 > 2 : 

𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2−𝑛𝑛 − 2𝑛𝑛2−𝑛𝑛−3 

Proof Strategy. 1. Total possible matrices: 2𝑛𝑛2−𝑛𝑛 (zero diagonal) 

2. Identify "unwelcome situations": Triples (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) where 𝑎𝑎𝑖𝑖𝑖𝑖 = 1, 𝑎𝑎𝑖𝑖𝑖𝑖 =
0, but 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 
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2. 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 and 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 ⇒ 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 

Example 6.3 (Topology Matrices for 𝑛𝑛 = 3 ). For 𝑋𝑋 = {1,2,3} with 

topology 𝜏𝜏 = {∅, {1}, {1,2}, 𝑋𝑋} : 

𝑀𝑀{1} = (
0 1 1
0 0 0
0 0 0

)

𝑀𝑀{1,2} = (
0 0 1
0 0 1
0 0 0

)
 

The topology is generated by these matrices. 

Theorem 6.4 (Uniqueness). Distinct non-trivial open sets produce distinct 

related matrices. Only ∅ and 𝑋𝑋 both map to the zero matrix. 

7 Combinatorial Enumeration of Topologies 

Theorem 7.1 (Krishnamurthy's Bound). The number 𝑇𝑇(𝑛𝑛) of topologies 

on 𝑛𝑛 elements satisfies: 

𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2−𝑛𝑛−1 

Theorem 7.2 (Vural's Improved Bound). For 𝑛𝑛 > 2 : 

𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2−𝑛𝑛 − 2𝑛𝑛2−𝑛𝑛−3 

Proof Strategy. 1. Total possible matrices: 2𝑛𝑛2−𝑛𝑛 (zero diagonal) 

2. Identify "unwelcome situations": Triples (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) where 𝑎𝑎𝑖𝑖𝑖𝑖 = 1, 𝑎𝑎𝑖𝑖𝑖𝑖 =
0, but 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 

3. For 𝑛𝑛 ≥ 3, show at least 2𝑛𝑛2−𝑛𝑛−3 matrices contain unwelcome 

situations 

4. Valid quasi-metrics are the remainder 

Example 7.3. The enumeration of topologies on finite sets reveals a 

fascinating combinatorial landscape where theoretical bounds and actual 

counts diverge in instructive ways. The table below compares the exact 

number of topologies 𝑇𝑇(𝑛𝑛) with Vural's upper bound for small values of 

𝑛𝑛 : 

𝑛𝑛 𝑇𝑇(𝑛𝑛) Vural's Bound 
 Bound 

𝑇𝑇(𝑛𝑛)  log2 ( Bound /𝑇𝑇(𝑛𝑛)) 

1 1 1 1.00 0 

2 4 4 1.00 0 

3 29 56 1.93 0.95 

4 355 3,584 10.10 3.33 

5 6,942 917,504 132.16 7.05 

6 209,527 939,524,096 4,484.70 12.13 

7 9,535,241 7,516,192,768 788.13 9.62 

 

Vural's bound exactly equals 𝑇𝑇(𝑛𝑛) since all 2𝑛𝑛2−𝑛𝑛 possible matrices 

satisfy the quasi-metric conditions at this scale. For 𝑛𝑛 = 2, the 4 matrices 

correspond exactly to: 

 Trivial topology: (0 0
0 0) 

 Two Sierpiński topologies: (0 1
0 0) , (0 0

1 0) 
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 Discrete topology: (0 1
1 0) 

At 𝑛𝑛 = 3, the bound (56) is nearly double the actual count (29), revealing 

the impact of triangle inequality constraints. The 27 "missing" topologies 

correspond to matrices violating the quasi-metric condition 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 ∧
𝑎𝑎𝑖𝑖𝑖𝑖 = 0 ⇒ 𝑎𝑎𝑖𝑖𝑖𝑖 = 1. 

While the absolute gap grows, the relative tightness improves compared 

to earlier bounds. Krishnamurthy's bound 2𝑛𝑛2−𝑛𝑛−1 is twice as large as 

Vural's for 𝑛𝑛 > 2 : 

𝑛𝑛 Krishnamurthy/Vural Vural /𝑇𝑇(𝑛𝑛) 

3 2.00 1.93 

4 2.00 10.10 

5 2.00 132.16 

 

Computational frontier: The exact enumeration becomes computationally 

infeasible beyond 𝑛𝑛 = 7 (9.5 million topologies). For 𝑛𝑛 = 8, estimates 

suggest approximately 1.5 billion topologies, while Vural's bound gives 

7.86 × 1013. 

Why the gap grows: The bound counts valid quasi-metrics, while 𝑇𝑇(𝑛𝑛) 
counts distinct topologies. The discrepancy comes from: 

 Redundancy: Multiple quasi-metrics can generate the same 

topology 

 Topological constraints: Additional axioms (e.g., 𝑇𝑇0 separation) 

reduce counts 
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infeasible beyond 𝑛𝑛 = 7 (9.5 million topologies). For 𝑛𝑛 = 8, estimates 

suggest approximately 1.5 billion topologies, while Vural's bound gives 

7.86 × 1013. 

Why the gap grows: The bound counts valid quasi-metrics, while 𝑇𝑇(𝑛𝑛) 
counts distinct topologies. The discrepancy comes from: 

 Redundancy: Multiple quasi-metrics can generate the same 

topology 

 Topological constraints: Additional axioms (e.g., 𝑇𝑇0 separation) 

reduce counts 

 Symmetry: Automorphisms create equivalence classes 

8 Testing Matrix Validity 

Definition 8.1 (Pivot Triplet). For matrix [𝑎𝑎𝑖𝑖𝑖𝑖] and indices 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, the 

pivot triplet is: 

𝑝𝑝𝑖𝑖,𝑖𝑖,𝑘𝑘 = [𝑎𝑎𝑖𝑖𝑖𝑖, 𝑎𝑎𝑖𝑖𝑘𝑘, 𝑎𝑎𝑘𝑘𝑖𝑖] 

The triangle inequality requires: 

𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑖𝑖  ⇔  ¬(𝑎𝑎𝑖𝑖𝑖𝑖 = 1 ∧ 𝑎𝑎𝑖𝑖𝑘𝑘 = 0 ∧ 𝑎𝑎𝑘𝑘𝑖𝑖 = 0) 

Definition 8.2 (Testing Matrix). The 𝑖𝑖-th testing matrix 𝑇𝑇𝑖𝑖 has entries: 

𝑇𝑇𝑖𝑖[𝑗𝑗, 𝑘𝑘] = 𝑝𝑝𝑖𝑖,𝑖𝑖,𝑘𝑘 = [𝑎𝑎𝑖𝑖𝑖𝑖, 𝑎𝑎𝑖𝑖𝑘𝑘, 𝑎𝑎𝑘𝑘𝑖𝑖] 

Example 8.3 (Testing Matrix for 𝑛𝑛 = 2 ). Consider matrix (0 1
0 0) : 

𝑇𝑇1 = [[0,0,0] [0,1,0]
[1,0,1] [1,1,0]] , 𝑇𝑇2 = [[0,0,0] [0,0,1]

[0,0,0] [0,0,0]] 

Check triangle inequalities: 

 𝑇𝑇1[2,1] : [1,0,1] requires 1 ≤ 0 + 1 (true) 

 𝑇𝑇1[2,2] : [1,1,0] requires 1 ≤ 1 + 0 (true) 

Valid quasi-metric. 

Example 8.4 (Testing Matrix for Symmetric Case). Consider the 

symmetric matrix 𝐴𝐴 = (0 1
1 0) representing a metric. The testing 

matrices are: 

𝑇𝑇1 = [[0,0,0] [0,1,1]
[1,0,1] [1,1,0]] , 𝑇𝑇2 = [[1,1,0] [1,0,1]

[0,1,1] [0,0,0]] 
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Verification of triangle inequalities: 

 𝑇𝑇1[1,2] : [0,1,1] requires 0 ≤ 1 + 1 (true) 

 𝑇𝑇1[2,1] : [1,0,1] requires 1 ≤ 0 + 1 (true) 

 𝑇𝑇2[1,1] : [1,1,0] requires 1 ≤ 1 + 0 (true) 

 𝑇𝑇2[1,2] : [1,0,1] requires 1 ≤ 0 + 1 (true) 

All conditions satisfied - valid metric space. 

Example 8.5 (Testing Matrix for 𝑛𝑛 = 3 with Violation). Consider matrix 

𝐵𝐵 = (
0 1 0
0 0 1
1 0 0

). The first testing matrix 𝑇𝑇1 is: 

𝑇𝑇1 = [
[0,0,0] [0,1,0] [0,0,1]
[1,0,0] [1,1,0] [1,0,0]
[0,0,1] [0,1,0] [0,0,0]

] 

Critical checks: 

 𝑇𝑇1[2,1] : [1,0,0] requires 1 ≤ 0 + 0 ? False (violation) 

 𝑇𝑇1[2,3] : [1,0,0] requires 1 ≤ 0 + 0 ? False (violation) 

The pivot triplet [1,0,0] appears at positions (2,1) and (2,3), violating 

the triangle inequality 𝑑𝑑(𝑥𝑥1, 𝑥𝑥2) ≤ 𝑑𝑑(𝑥𝑥1, 𝑥𝑥𝑘𝑘) + 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥2) for 𝑘𝑘 = 1,3. 

This matrix fails the quasi-metric test. 

9 Algorithms for Generating Topologies 

Proposition 9.1 (Matrix Generation). All topologies on 𝑛𝑛 elements can be 

generated by: 

1. Generate all 2𝑛𝑛2−𝑛𝑛 binary matrices with zero diagonal 

2. Filter matrices satisfying ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘: (𝑎𝑎𝑖𝑖𝑖𝑖 = 1 ∧ 𝑎𝑎𝑖𝑖𝑘𝑘 = 0) ⇒ 𝑎𝑎𝑘𝑘𝑖𝑖 = 1 
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[0,0,0] [0,1,0] [0,0,1]
[1,0,0] [1,1,0] [1,0,0]
[0,0,1] [0,1,0] [0,0,0]

] 

Critical checks: 

 𝑇𝑇1[2,1] : [1,0,0] requires 1 ≤ 0 + 0 ? False (violation) 

 𝑇𝑇1[2,3] : [1,0,0] requires 1 ≤ 0 + 0 ? False (violation) 

The pivot triplet [1,0,0] appears at positions (2,1) and (2,3), violating 

the triangle inequality 𝑑𝑑(𝑥𝑥1, 𝑥𝑥2) ≤ 𝑑𝑑(𝑥𝑥1, 𝑥𝑥𝑘𝑘) + 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥2) for 𝑘𝑘 = 1,3. 

This matrix fails the quasi-metric test. 

9 Algorithms for Generating Topologies 

Proposition 9.1 (Matrix Generation). All topologies on 𝑛𝑛 elements can be 

generated by: 

1. Generate all 2𝑛𝑛2−𝑛𝑛 binary matrices with zero diagonal 

2. Filter matrices satisfying ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘: (𝑎𝑎𝑖𝑖𝑖𝑖 = 1 ∧ 𝑎𝑎𝑖𝑖𝑘𝑘 = 0) ⇒ 𝑎𝑎𝑘𝑘𝑖𝑖 = 1 

3. Group matrices by the topology they generate 

Remark 9.2. This naive approach has complexity 𝑂𝑂(2𝑛𝑛2), feasible only 

for 𝑛𝑛 ≤ 4. More efficient algorithms use lattice generation or preorder 

enumeration. 

Example 9.3 (Algorithm for 𝑛𝑛 = 3 ). There are 29−3 = 64 candidate 

matrices. After filtering: 

 29 valid quasi-metrics 

 19 distinct topologies (some matrices generate same topology) 

 10 topologies correspond to T0 spaces 

10 Applications 

10.1 Computational Topology 

Binary quasi-metric representations enable efficient topology 

computation in: 

 Point cloud data analysis 

 Persistent homology calculations 

 Topological data structures 

10.2 Logic and Computer Science 

Applications include: 

 Domain theory in programming language semantics models for 

concurrency 

 Knowledge representation systems 
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Conclusion 

The representation of topological structures through binary quasi-metrics 

has fundamentally transformed our understanding of finite topological 

spaces, establishing a powerful combinatorial framework that bridges 

continuous mathematics and discrete computation. By translating 

topological axioms into matrix op-erations-where open sets correspond to 

specific 0-1 patterns, continuous functions to matrix homomorphisms, 

and topological generation to combinatorial enumeration-this approach 

has enabled unprecedented insights into the structural complexity of 

topological spaces. The quasi-metric paradigm demonstrates that 

topology is inherently combinatorial at its core, with the super-

exponential growth 𝑇𝑇(𝑛𝑛) reflecting profound combinatorial richness 

rather than geometric complexity. Vural's bound 𝑇𝑇(𝑛𝑛) ≤ 2𝑛𝑛2−𝑛𝑛 −

2𝑛𝑛2−𝑛𝑛−3 for 𝑛𝑛 > 2 represents a landmark achievement in this field, 

significantly improving Krishnamurthy's classical result by systematically 

excluding invalid matrices through the identification of "unwelcome 

situations" in testing matrices, while also revealing the intricate 

constraints imposed by the triangle inequality in quasi-metric spaces. 

Despite these advances, fundamental challenges remain unresolved. The 

exact enumeration problem for 𝑛𝑛 ≥ 5 continues to defy complete 

classification, with 𝑇𝑇(10) estimated to exceed 1030 and no closed-form 

formula yet discovered. The tension between combinatorial 

expressiveness and computational feasibility persists, as current 

algorithms still face exponential complexity barriers. Moreover, deeper 

structural questions await investigation: the precise relationship between 

quasi-metric algebras and topology lattices remains incompletely 

characterized, the categorical foundations of this correspondence warrant 

further exploration, and potential connections to sheaf theory and topos 
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2𝑛𝑛2−𝑛𝑛−3 for 𝑛𝑛 > 2 represents a landmark achievement in this field, 

significantly improving Krishnamurthy's classical result by systematically 

excluding invalid matrices through the identification of "unwelcome 

situations" in testing matrices, while also revealing the intricate 

constraints imposed by the triangle inequality in quasi-metric spaces. 

Despite these advances, fundamental challenges remain unresolved. The 

exact enumeration problem for 𝑛𝑛 ≥ 5 continues to defy complete 

classification, with 𝑇𝑇(10) estimated to exceed 1030 and no closed-form 

formula yet discovered. The tension between combinatorial 

expressiveness and computational feasibility persists, as current 

algorithms still face exponential complexity barriers. Moreover, deeper 

structural questions await investigation: the precise relationship between 

quasi-metric algebras and topology lattices remains incompletely 

characterized, the categorical foundations of this correspondence warrant 

further exploration, and potential connections to sheaf theory and topos 

theory suggest rich avenues for generalization. Looking forward, three 

promising frontiers emerge: quantum computational approaches that 

could potentially crack 𝑛𝑛 ≥ 10 through superposition and entanglement; 

machine learning methods that might discover novel topology patterns in 

high-dimensional spaces; and physical applications in topological 

quantum computing where quasi-metric representations could optimize 

qubit arrangements. Ultimately, this combinatorial reframing of topology 

has not only provided powerful new enumeration techniques but has 

fundamentally reshaped our conception of topological structure itself-

revealing that continuity, when viewed through the discrete lens of binary 

relations, becomes a combinatorial phenomenon of remarkable depth and 

beauty. 

Exercises 

1. Verify the 4 topologies for 𝑛𝑛 = 2 and their matrix representations 

2. Show that the discrete topology on 𝑛𝑛 elements requires 𝑛𝑛 

generating matrices 

3. Prove that 𝑑𝑑𝑈𝑈 ⋄ 𝑑𝑑𝑉𝑉 = 𝑑𝑑𝑈𝑈∩𝑉𝑉 

4. For 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, construct matrices for the topology 

{∅, {𝑎𝑎, 𝑏𝑏}, 𝑋𝑋} 

5. Calculate Vural's bound for 𝑛𝑛 = 4 and compare to actual 

𝑇𝑇(4) = 355 
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Types of Convergence in Lattices and Their Interrelationships 

The theory of convergence in lattices represents a fundamental 

intersection between order theory, functional analysis, and topology. This 

chapter provides a comprehensive examination of various types of 

convergence defined on lattices, with particular emphasis on their 

interrelationships and hierarchical structure. We explore classical order 

convergence and its unbounded variants, star convergence and its recent 

generalizations, as well as various hybrid forms that have emerged in the 

modern theory of Riesz spaces. Our treatment encompasses both the 

historical development of these concepts and their current state-of-the-art 

applications, providing a unified framework for understanding how 

different modes of convergence interact within the lattice-theoretic 

setting. 

1.1 Introduction and Historical Development 

The concept of convergence stands as one of the cornerstones of 

mathematical analysis, with its roots extending deep into the 19th 

century. Initially formulated for sequences in metric spaces, the notion of 

convergence underwent a fundamental transformation with the 

introduction of directed sets and nets by Moore and Smith in 1922. This 

generalization proved particularly fruitful in the context of topological 

spaces, where the limitations of sequential convergence became apparent. 

The emergence of Riesz space theory in the late 1920s created a natural 

setting for developing convergence concepts that respect both the 

algebraic and order structures present in these spaces. Unlike topological 

convergence, which relies on open sets and neighborhoods, convergence 

in lattices exploits the partial order to define various modes of 

convergence that are intrinsic to the ordered structure. 

Büşra Zümre DOĞRU
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1. TYPES OF CONVERGENCE IN LATTICES AND THEIR 

INTERRELATIONSHIPS 

1.1.1 Order Convergence 

The first and perhaps most fundamental type of convergence in lattices is 

order convergence, introduced by Birkhoff in his seminal 1937 paper [6]. 

This concept arose naturally from the study of lattice-ordered groups and 

vector lattices, where the order structure provides a natural way to 

measure the "closeness" of elements. 

Definition 1.1.1 (Order Convergence). Let 𝑋𝑋 be a Riesz space, 

(𝑥𝑥𝛼𝛼)𝛼𝛼∈Λ ⊂ 𝑋𝑋 be a net, and 𝑥𝑥 ∈ 𝑋𝑋. The net ( 𝑥𝑥𝛼𝛼 ) is said to order converge 

to 𝑥𝑥 (denoted 𝑥𝑥𝛼𝛼 →𝑜𝑜 𝑥𝑥 ) if there exists a net (𝑦𝑦𝛽𝛽)𝛽𝛽∈Ω in 𝑋𝑋 such that: 

1. 𝑦𝑦𝛽𝛽 ↓ 0 (i.e., (𝑦𝑦𝛽𝛽) is decreasing and inf
𝛽𝛽

 𝑦𝑦𝛽𝛽 = 0 ) 

2. For each 𝛽𝛽 ∈ Ω, there exists 𝛼𝛼0 ∈ Λ such that |𝑥𝑥𝛼𝛼 − 𝑥𝑥| ⩽ 𝑦𝑦𝛽𝛽 for 

all 𝛼𝛼 ⩾ 𝛼𝛼0 

The element 𝑥𝑥 is called the order limit of the net ( 𝑥𝑥𝛼𝛼 ). 

A crucial property of order convergence is its uniqueness: in a Riesz 

space, if a net has an order limit, this limit is unique. This fact, combined 

with the compatibility of order convergence with the lattice operations, 

makes it a natural tool for studying the structure of Riesz spaces. The 

theory of order convergence has been extensively developed and applied 

in various contexts [1,2,3,21]. 

1.1.2 Individual Convergence and Unbounded Order Convergence 

The year 1948 marked a significant development in the theory of 

convergence in ordered spaces with Nakano's introduction of individual 

convergence in continuous semi-ordered linear spaces [12]. Nakano's 
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motivation stemmed from the desire to capture the notion of "almost 

everywhere convergence" in measure theory using only lattice operations, 

without explicit reference to measures. 

Definition 1.1.2 (Nakano's Individual Convergence). Let ℳ be a 

continuous semiordered linear space and (𝑥𝑥𝛼𝛼)𝛼𝛼∈Λ be a net in ℳ. For any 

𝑐𝑐1, 𝑐𝑐2 ∈ ℳ with 𝑐𝑐1 ≥ 𝑐𝑐2, if: 

1. lim sup
𝛼𝛼→∞

 (𝑥𝑥𝛼𝛼 ∧ 𝑐𝑐1) ∨ 𝑐𝑐2 = 𝑥𝑥‾ exists, 

2. lim inf
𝛼𝛼→∞

 (𝑥𝑥𝛼𝛼 ∧ 𝑐𝑐1) ∨ 𝑐𝑐2 = 𝑥𝑥 exists, 

3. 𝑥𝑥‾ = 𝑥𝑥 = 𝑥𝑥, 

then the net (𝑥𝑥𝛼𝛼)𝛼𝛼∈Λ is said to converge individually to 𝑥𝑥 in ℳ. 

This concept was later reformulated and generalized by DeMarr 

in 1964 [8], who introduced what is now known as unbounded 

order convergence: 

Definition 1.1.3 (Unbounded Order Convergence). 𝐴𝐴 net (𝑥𝑥𝛼𝛼)𝛼𝛼∈Λ in a 

Riesz space 𝑋𝑋 unboundedly order converges to an element 𝑥𝑥 ∈ 𝑋𝑋 

(denoted by 𝑥𝑥𝛼𝛼 →
 uo  

𝑥𝑥 ) if for every 𝑦𝑦 ∈ 𝑋𝑋+, we have |𝑥𝑥𝛼𝛼 − 𝑥𝑥| ∧ 𝑦𝑦 →𝑜𝑜 0. 

The relationship between unbounded order convergence and weak 

convergence was thoroughly investigated by Wickstead in 1977 [22], 

revealing deep connections between order-theoretic and topological 

modes of convergence. Kaplan [10] provided several important 

characterizations of unbounded order convergence, establishing its role as 

a fundamental tool in the study of Riesz spaces. 

1.1.3 Modern Developments in Unbounded Convergence 

The success of unbounded order convergence inspired researchers to 

explore similar "unbounded" versions of other convergence types. This 
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led to a proliferation of new convergence concepts in the early 21st 

century. 

Taylor introduced unbounded topological convergence in 2019 [16], 

providing a framework that unifies topological and order-theoretic 

approaches: 

Definition 1.1.4 (Unbounded Topological Convergence). Let ( 𝑋𝑋, 𝜏𝜏 ) be a 

locally solid vector lattice and 𝐴𝐴 ⊆ 𝑋𝑋 an ideal. 𝐴𝐴 net (𝑥𝑥𝛼𝛼) in 𝑋𝑋 

unboundedly 𝜏𝜏-converges to 𝑥𝑥 ∈ 𝑋𝑋 with respect to 𝐴𝐴 if |𝑥𝑥𝛼𝛼 − 𝑥𝑥| ∧

|𝑎𝑎| →𝜏𝜏 0 for all 𝑎𝑎 ∈ 𝐴𝐴, or equivalently, if |𝑥𝑥𝛼𝛼 − 𝑥𝑥| ∧ 𝑎𝑎 →𝜏𝜏 0 for all 𝑎𝑎 ∈ 𝐴𝐴+. 

In the context of Banach lattices, Troitsky introduced d-convergence in 

2004 [17], which was later renamed unbounded norm convergence by 

O'Brien [13]: 

Definition 1.1.5 (Unbounded Norm Convergence). 𝐴𝐴 net (𝑥𝑥𝛼𝛼) ⊂ 𝑋𝑋 in a 

Banach lattice 𝑋𝑋 is said to unboundedly norm converge to 𝑥𝑥 ∈ 𝑋𝑋 (denoted 

𝑥𝑥𝛼𝛼 →𝑢𝑢𝑢𝑢 𝑥𝑥 ) if for every 𝑦𝑦 ∈ 𝑋𝑋+, we have ‖||(𝑥𝑥𝛼𝛼 − 𝑥𝑥 ∣∧ 𝑦𝑦‖ → 0. 

Zabeti's 2018 contribution [23] introduced unbounded absolute weak 

convergence, further enriching the landscape of convergence concepts: 

Definition 1.1.6 (Unbounded Absolute Weak Convergence). A net 

(𝑥𝑥𝛼𝛼) ⊂ 𝑋𝑋 in a Banach lattice 𝑋𝑋 is said to unboundedly absolute weak 

converge to 𝑥𝑥 ∈ 𝑋𝑋 (denoted 𝑥𝑥𝛼𝛼 →
 uaw  

𝑥𝑥) if for every 𝑦𝑦 ∈ 𝑋𝑋+and every 

𝑓𝑓 ∈ 𝑋𝑋∗, we have |𝑓𝑓|(|𝑥𝑥𝛼𝛼 − 𝑥𝑥| ∧ 𝑦𝑦) → 0. 

Remark. For comprehensive examination of these convergence theories 

and their applications, readers are encouraged to consult the extensive 

literature on unbounded convergence, with particular attention to Vural's 
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foundational work on unbounded locally solid Riesz spaces [21], which 

provides essential theoretical groundwork for understanding these 

advanced convergence concepts. Additional fundamental references 

include Abramovich and Aliprantis's comprehensive treatment of 

operator theory in vector lattices [1], Aliprantis and Burkinshaw's 

classical work on positive operators [3], and Schaefer's authoritative text 

on Banach lattices [15]. 

1.1.4 Star Convergence and Its Generalizations 

Star convergence represents another fundamental approach to 

convergence in lattices, discovered independently by Urysohn [18], 

Kantorovich [9], and Von Neumann [19]. Birkhoff's comprehensive study 

[7] established star convergence as a central concept in lattice theory. 

Definition 1.1.7 (Star Convergence). Let (𝐿𝐿, ⩽) be a lattice and (𝑥𝑥𝛼𝛼)𝛼𝛼∈Λ 

be a net in 𝐿𝐿. The net ( 𝑥𝑥𝛼𝛼 ) is said to star converge to 𝑥𝑥 ∈ 𝐿𝐿 (denoted 

𝑥𝑥𝛼𝛼 →𝑠𝑠 𝑥𝑥 ) if every subnet (𝑥𝑥𝛽𝛽) of (𝑥𝑥𝛼𝛼) has a subnet (𝑥𝑥𝛾𝛾) such that 

𝑥𝑥𝛾𝛾 →𝑜𝑜 𝑥𝑥. 

4CHAPTER 1. TYPES OF CONVERGENCE IN LATTICES AND 

THEIR INTERRELATIONSHIPS 

Star convergence satisfies the Urysohn property: if every subnet of a net 

has a further subnet converging to 𝑥𝑥, then the original net star converges 

to 𝑥𝑥. This property makes star convergence particularly useful in 

compactness arguments. 

The most recent addition to this family of convergence concepts is 

unbounded star convergence, introduced by Vural in 2024 [20]: 
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Definition 1.1.8 (Unbounded Star Convergence). Let ( 𝐿𝐿, ⩽ ) be a lattice, 

( 𝑥𝑥𝛼𝛼 ) be a net in 𝐿𝐿 and 𝑥𝑥 ∈ 𝐿𝐿. The net ( 𝑥𝑥𝛼𝛼 ) is said to unboundedly star 

converge to 𝑥𝑥 (denoted 𝑥𝑥𝛼𝛼 →𝑢𝑢𝑢𝑢 𝑥𝑥) if for every subnet ( 𝑥𝑥𝛽𝛽 ) of ( 𝑥𝑥𝛼𝛼 ), there 

exists a subnet ( 𝑥𝑥𝜁𝜁  ) of ( 𝑥𝑥𝛽𝛽 ) such that (𝑥𝑥𝜁𝜁 ∧ 𝑏𝑏) ∨ 𝑎𝑎 →𝑜𝑜 (𝑥𝑥 ∧ 𝑏𝑏) ∨ a for 

every 𝑎𝑎, 𝑏𝑏 ∈ 𝐿𝐿 with 𝑎𝑎 ⩽ 𝑏𝑏. 

1.2 Relationships Between Types of Convergence 

Understanding the relationships between different types of convergence 

is crucial for applying these concepts effectively. This section provides a 

comprehensive analysis of how these convergence types relate to one 

another. 

1.2.1 Fundamental Implications 

The following theorem summarizes the basic relationships between the 

convergence types we have introduced: 

Theorem 1.2.1 (Fundamental Convergence Relationships). Let 𝑋𝑋 be a 

Riesz space and ( 𝑥𝑥𝛼𝛼 ) be a net in 𝑋𝑋. The following implications hold: 

1. Order convergence ⇒ Star convergence 

2. Order convergence ⇒ Unbounded order convergence 

3. Star convergence ⇒ Unbounded star convergence 

4. Unbounded order convergence ⇒ Unbounded star convergence 

5. Unbounded norm convergence ⇒ Unbounded absolute weak 

convergence (in Banach lattices) 

6. Unbounded topological convergence ⇒ Unbounded order 

convergence (in locally solid vector lattices) 
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Proof. We provide a sketch of the key ideas: 

(1) If 𝑥𝑥𝛼𝛼 →𝑜𝑜 𝑥𝑥, then for any subnet (𝑥𝑥𝛽𝛽), we still have 𝑥𝑥𝛽𝛽 →𝑜𝑜 𝑥𝑥, which 

immediately gives star convergence. 

(2) If |𝑥𝑥𝛼𝛼 − 𝑥𝑥| ⩽ 𝑦𝑦𝛽𝛽  with 𝑦𝑦𝛽𝛽 ↓ 0, then for any 𝑧𝑧 ∈ 𝑋𝑋+, we have |𝑥𝑥𝛼𝛼 −
𝑥𝑥| ∧ 𝑧𝑧 ⩽ 𝑦𝑦𝛽𝛽 ∧ 𝑧𝑧 ↓ 0. 

(3) and (4) follow from combining the definitions with (1) and (2). 

(5) and (6) follow from the properties of the norm and topology in the 

respective spaces. 

1.2.2 Non-Implications and Counterexamples 

Equally important are the relationships that do not hold in general: 

Theorem 1.2.2 (Non-Implications). The following implications do not 

hold in general: 

1. Star convergence ⇏ Order convergence 

2. Unbounded order convergence ⇏ Order convergence 

3. Unbounded star convergence ⇏ Star convergence 

4. Unbounded star convergence ⇏ Unbounded order convergence 

5. Unbounded absolute weak convergence ⇏ Unbounded norm 

convergence 

1.2.3 Relationship Diagram 

The complete hierarchy of convergence types can be visualized in the 

following diagram: 
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Convergence Hierarchy 

→ : implies 

1.3 Examples and Applications 

This section provides concrete examples illustrating the relationships and 

distinctions between different types of convergence. 

Example 1.3.1 (Standard Unit Vectors in 𝑐𝑐0 ). Consider the sequence of 

standard unit vectors ( 𝑒𝑒𝑛𝑛 ) in the Riesz space 𝑐𝑐0 of sequences converging 

to zero. We have: 

 𝑒𝑒𝑛𝑛 →𝑢𝑢𝑢𝑢 0 (unbounded order converges to 0 ) 

6CHAPTER 1. TYPES OF CONVERGENCE IN LATTICES AND 

THEIR INTERRELATIONSHIPS 

 𝑒𝑒𝑛𝑛 →
𝑞𝑞 

0 (does not order converge to 0 ) 

 𝑒𝑒𝑛𝑛 →𝑢𝑢𝑢𝑢 0 (unbounded star converges to 0 ) 

 𝑒𝑒𝑛𝑛 →𝑢𝑢 p (does not star converge to 0 ) 

 𝑒𝑒𝑛𝑛 →
 un  

0 (unbounded norm converges to 0 in the supremum 

norm) 
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 𝑒𝑒𝑛𝑛 →
 uaw  

0 (unbounded absolute weak converges to 0 ) 

To see why 𝑒𝑒𝑛𝑛 →9 0, note that if there were a sequence (𝑦𝑦𝑘𝑘) with 𝑦𝑦𝑘𝑘 ↓ 0 

and 𝑒𝑒𝑛𝑛 ⩽ 𝑦𝑦𝑘𝑘 for all large 𝑛𝑛, then each coordinate of 𝑦𝑦𝑘𝑘 would need to be 

at least 1 , contradicting 𝑦𝑦𝑘𝑘 ↓ 0 in 𝑐𝑐0. 

For unbounded order convergence, observe that for any 𝑦𝑦 ∈ 𝑐𝑐0
+, we have 

𝑒𝑒𝑛𝑛 ∧ 𝑦𝑦 = (0, … ,0, min(1, 𝑦𝑦𝑛𝑛), 0, … ) →𝑜𝑜 0 since 𝑦𝑦𝑛𝑛 → 0. 

Example 1.3.2 (Borel Sets and Star Convergence). In the lattice of Borel 

subsets of the unit interval [0,1], Birkhoff [7] and Rennie [14] 

constructed sequences that star converge but do not order converge. 

Consider the sequence of sets defined by: 

𝐴𝐴𝑛𝑛 = ⋃  
2𝑛𝑛+1−1

𝑘𝑘=2𝑛𝑛
[ 𝑘𝑘
2𝑛𝑛+1 , 𝑘𝑘 + 1

2𝑛𝑛+1 ) 

This sequence consists of alternating intervals that become finer with 

each 𝑛𝑛. One can verify that: 

 (𝐴𝐴𝑛𝑛) star converges to ∅ 

 (𝐴𝐴𝑛𝑛) does not order converge to ∅ 

The failure of order convergence occurs because there is no decreasing 

sequence of sets ( 𝐵𝐵𝑘𝑘 ) with 𝐵𝐵𝑘𝑘 ↓ ∅ such that 𝐴𝐴𝑛𝑛 ⊆ 𝐵𝐵𝑘𝑘 for all sufficiently 

large 𝑛𝑛. 

Example 1.3.3 (Function Spaces). Let 𝑋𝑋 = 𝐿𝐿𝑝𝑝[0,1] for 1 ⩽ 𝑝𝑝 < ∞. 

Consider the sequence of functions 𝑓𝑓𝑛𝑛(𝑡𝑡) = 𝑛𝑛1/𝑝𝑝𝜒𝜒[0,1/𝑛𝑛](𝑡𝑡), where 𝜒𝜒𝐴𝐴 

denotes the characteristic function of set 𝐴𝐴. 
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 𝑓𝑓𝑛𝑛 →9 0 (does not order converge) 

 𝑓𝑓𝑛𝑛 →𝑢𝑢𝑢𝑢 0 (unbounded order converges) 

 ‖𝑓𝑓𝑛𝑛‖𝑝𝑝 = 1 for all 𝑛𝑛, so 𝑓𝑓𝑛𝑛 ↛ 0 in norm 

 For any 𝑔𝑔 ∈ 𝐿𝐿𝑝𝑝[0,1]+, we have |𝑓𝑓𝑛𝑛| ∧ 𝑔𝑔 →𝑢𝑢 0 

This example shows that unbounded order convergence can occur even 

when norm convergence fails. 

1.4 Special Cases and Characterizations 

Understanding when different types of convergence coincide provides 

valuable insights into the structure of specific spaces. 

Theorem 1.4.1 (Convergence in Order Continuous Banach Lattices). Let 

𝑋𝑋 be an order continuous Banach lattice. Then: 

1. Unbounded norm convergence implies unbounded order 

convergence 

2. If 𝑋𝑋 has order continuous norm, then 𝑥𝑥𝛼𝛼 →𝑢𝑢𝑢𝑢 𝑥𝑥 and ( 𝑥𝑥𝛼𝛼 ) is norm 

bounded implies 𝑥𝑥𝛼𝛼 →
‖⋅‖ 

𝑥𝑥 

Theorem 1.4.2 (Convergence in Dedekind Complete Spaces). In a 

Dedekind complete Riesz space: 

1. A net ( 𝑥𝑥𝛼𝛼 ) unboundedly order converges to 𝑥𝑥 if and only if 

(𝑥𝑥𝛼𝛼 − 𝑥𝑥)+ ∧ 𝑦𝑦 →𝑢𝑢 0 and (𝑥𝑥𝛼𝛼 − 𝑥𝑥)− ∧ 𝑦𝑦 →𝑢𝑢 0 for all 𝑦𝑦 ∈ 𝑋𝑋+ 

2. Star convergence can be characterized using order convergence 

of appropriate subnets 
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1.5 Applications to Functional Analysis 

The various types of convergence in lattices have found numerous 

applications in functional analysis and related fields. 

1.5.1 Operator Theory 

Unbounded order convergence plays a crucial role in the study of order 

continuous operators between Riesz spaces. An operator 𝑇𝑇: 𝑋𝑋 → 𝑌𝑌 

between Riesz spaces is unbounded order continuous if 𝑥𝑥𝛼𝛼 →𝑢𝑢𝑢𝑢 0 in 𝑋𝑋 

implies 𝑇𝑇𝑥𝑥𝛼𝛼 →𝑢𝑢𝑢𝑢 0 in 𝑌𝑌. 

Theorem 1.5.1. Let 𝑋𝑋 and 𝑌𝑌 be Riesz spaces with 𝑌𝑌 Dedekind complete. 

An order bounded operator 𝑇𝑇: 𝑋𝑋 → 𝑌𝑌 is unbounded order continuous if 

and only if 𝑇𝑇 maps unbounded order null nets to unbounded order null 

nets. 

1.5.2 Measure Theory 

In spaces of measurable functions, unbounded order convergence often 

corresponds to convergence in measure, while order convergence 

corresponds to dominated convergence. 

Theorem 1.5.2 (Convergence in 𝐿𝐿0 ). Let ( Ω, ℱ, 𝜇𝜇 ) be a measure space 

and 𝐿𝐿0(𝜇𝜇) be the space of measurable functions. Then: 

8CHAPTER 1. TYPES OF CONVERGENCE IN LATTICES AND 

THEIR INTERRELATIONSHIPS 

1. A sequence (𝑓𝑓𝑛𝑛) in 𝐿𝐿0(𝜇𝜇) unboundedly order converges to 𝑓𝑓 if 

and only if 𝑓𝑓𝑛𝑛 → 𝑓𝑓 in measure on every set of finite measure 

2. Order convergence in 𝐿𝐿0(𝜇𝜇) is equivalent to dominated 

convergence in measure 
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1.6 Recent Developments and Open Problems 

The theory of convergence in lattices continues to be an active area of 

research. Recent developments include: 

1.6.1 Convergence Structures 

Researchers have begun studying abstract convergence structures on 

lattices that generalize the specific types of convergence discussed here. 

These structures provide a unified framework for understanding 

convergence phenomena. 

1.6.2 Applications to Vector Optimization 

Unbounded convergence concepts have found applications in vector 

optimization problems, where the order structure provides a natural way 

to compare vector-valued objectives. 

1.6.3 Open Problems 

Several important questions remain open: 

1. Characterization Problem: For which classes of lattices does 

unbounded star convergence coincide with unbounded order 

convergence? 

2. Compactness Problem: Develop appropriate notions of 

compactness for each type of convergence and characterize the 

spaces in which these compactness notions are equivalent. 

3. Duality Theory: Extend the theory of convergence to dual spaces 

and characterize when convergence in a space corresponds to 

convergence in its dual. 

4. Topological Characterization: Find topological characterizations 

of spaces where different types of convergence coincide. 
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5. Applications to PDEs: Explore applications of unbounded 

convergence concepts to the theory of partial differential 

equations in function spaces. 

 

1.7 Conclusion 

The theory of convergence in lattices provides a rich framework for 

understanding limiting processes in ordered structures. From the classical 

order convergence introduced by Birkhoff to the recent unbounded star 

convergence of Vural, each type of convergence captures different 

aspects of how nets behave in lattices. 

The hierarchy of convergence types reveals a delicate interplay between 

ordertheoretic and topological properties. While order convergence 

provides the strongest form of convergence, its unbounded variants offer 

greater flexibility and wider applicability, particularly in spaces of 

unbounded functions and operators. 

As the theory continues to develop, new applications emerge in areas 

ranging from functional analysis and measure theory to optimization and 

mathematical economics. The open problems presented here suggest that 

the field remains vibrant, with many fundamental questions yet to be 

resolved. 

Understanding these convergence concepts and their relationships is 

essential for anyone working with ordered structures in analysis, 

providing both theoretical insights and practical tools for tackling 

complex problems in modern mathematics. 
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1. INTRODUCTION 

In the realm of approximation theory, the accurate estimation of 
the derivatives of a function holds equal significance to that of the 
function itself. A foundational contribution in this area was made by 
Mamedov (1963), who introduced a novel class of summation-integral 
operators aimed at achieving enhanced precision in the approximation of 
higher-order derivatives. Historically, finite difference schemes have long 
served as the primary tools for such approximations; however, 
Mamedov’s operators represent a more refined alternative, offering 
increased sensitivity and accuracy relative to these traditional methods. 
The operators proposed by Mamedov can be interpreted as natural 
extensions of classical integral operators characterized by linear and 
convolution-type kernels. Within the framework of his study, these are 
referred to as 𝑚𝑚 −singular integral operators, encapsulating a broad 
spectrum of generalizations. Notably, when the parameter 𝑚𝑚 = 1, these 
operators reduce to the well-established classical integral forms. Such 
generalizations are frequently categorized under the umbrella of Jackson-
type or Jackson-Stechkin-type operators in the contemporary literature 
(see, for instance, (Rydzewska, 1978; Yılmaz, 2014)). A salient feature of 
Mamedov’s approach lies in the abstraction of the kernel function 
through a general symbolic representation. This formulation enables the 
incorporation of a wide variety of classical approximate identities, such 
as the Picard, Gauss-Weierstrass and Abel-Poisson kernels, which are 
prominent in smoothing and regularization procedures. In several 
subsequent investigations, the general kernel framework has been 
concretely specified, thereby facilitating the detailed analytical treatment 
and numerical implementation of the associated operators (see, for 
example, (Butzer & Nessel, 1971; Aydın & Aral, 2013; Aydın-Arı & 
Yılmaz, 2021)). 

Musielak (1983) undertook a detailed study on the approximation 
behavior of nonlinear integral operators, wherein the primary analytical 
obstacle—nonlinearity—was effectively addressed by employing a 
generalized Lipschitz-type condition. This methodological innovation 
enabled the control of nonlinearity within the approximation framework, 
thereby extending the scope of classical operator theory. In a subsequent 
and more advanced contribution, Musielak (1991) expanded upon the 
analytical groundwork established in (Musielak, 1983) by formulating the 
problem within the structure of generalized Orlicz spaces, thus 
facilitating a more flexible and comprehensive functional setting for 
analyzing the approximation properties of the aforementioned operators. 

GÜMRAH UYSAL
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behavior of nonlinear integral operators, wherein the primary analytical 
obstacle—nonlinearity—was effectively addressed by employing a 
generalized Lipschitz-type condition. This methodological innovation 
enabled the control of nonlinearity within the approximation framework, 
thereby extending the scope of classical operator theory. In a subsequent 
and more advanced contribution, Musielak (1991) expanded upon the 
analytical groundwork established in (Musielak, 1983) by formulating the 
problem within the structure of generalized Orlicz spaces, thus 
facilitating a more flexible and comprehensive functional setting for 
analyzing the approximation properties of the aforementioned operators. 

Later, Świderski and Wachnicki (2000) investigated the pointwise 
convergence of the nonlinear integral operator family by taking into 
account the influence of two distinct parameters. Their analysis focused 
on the behavior of these operators at Lebesgue points of functions 
belonging to the Lebesgue space 𝐿𝐿𝑝𝑝 with  𝑝𝑝 ≥ 1 providing deeper insight 
into the local convergence phenomena. For a broader context and further 
related developments in this area, we refer the interested reader to the 
works cited in (Bardaro et al., 2003; Bardaro et al., 2013; Karslı, 2014; 
Esen-Almalı & Gadjiev, 2016; Uysal, 2018). 

Let 𝑅𝑅, 𝑅𝑅0
+ and 𝑍𝑍+ stand for the set of all real numbers, all non-

negative real numbers and all positive integers, respectively. Mamedov 
(1963) constructed the following 𝑚𝑚 −singular integral operators: 

L𝑟𝑟
[𝑚𝑚](𝑢𝑢; 𝑧𝑧) = (−1)𝑚𝑚+1 ∫ (∑(−1)𝑚𝑚−𝑗𝑗 (𝑚𝑚

𝑗𝑗 ) 𝑢𝑢(𝑧𝑧 + 𝑗𝑗𝑗𝑗)
𝑚𝑚

𝑗𝑗=1
) 𝐾𝐾𝑟𝑟(𝑗𝑗)𝑑𝑑𝑗𝑗,

+∞

−∞
                     (1.1) 

where 𝑧𝑧, 𝑗𝑗 ∈ 𝑅𝑅. In equation (1.1), 𝑚𝑚 is a certain positive integer and the 
(kernel) function 𝐾𝐾𝑟𝑟,  𝐾𝐾𝑟𝑟: 𝑅𝑅 → 𝑅𝑅0

+, where 𝑟𝑟 denotes a positive parameter 
which belongs to the index set 𝐼𝐼, is possessing some specific properties as 
the approximate identities (see (Butzer & Nessel, (1971)). Some studies 
related to 𝑚𝑚 −singular integral operators were presented by Rydzewska 
(1978), Bardaro et al. (2013), Karslı (2014), Yılmaz (2014) and Uysal 
(2018). 

Esen-Almalı (2017) considered the following nonlinear integral 
operators:  

𝑊𝑊𝑟𝑟
[𝑁𝑁](𝑢𝑢; 𝑧𝑧) = ∫ ∑ 𝑢𝑢𝑛𝑛(𝑗𝑗)

𝑁𝑁

𝑛𝑛=1
𝐺𝐺𝑟𝑟,𝑛𝑛(𝑧𝑧, 𝑗𝑗)𝑑𝑑𝑗𝑗,                                                                            (1.2)

𝑓𝑓

𝑒𝑒
 

where 𝑧𝑧, 𝑗𝑗 ∈ (𝑒𝑒, 𝑓𝑓), (𝑒𝑒, 𝑓𝑓) is a bounded interval of 𝑅𝑅 or 𝑅𝑅 itself. 
𝐺𝐺𝑟𝑟,𝑛𝑛,  𝐺𝐺𝑟𝑟,𝑛𝑛: 𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅0

+, where 𝑟𝑟 denotes a positive parameter which 
belongs to the index set 𝐼𝐼, is enriched with some specific properties. The 
source of nonlinearity stems from the expression 𝑢𝑢𝑛𝑛(𝑗𝑗), characterizing a 
power-type nonlinearity. Some related  studies are given by Esen-Almalı 
et al. (2017), Uysal (2018) and Serin (2020).  

Incorporating the operators in equations (1.1) and (1.2), we get 

𝑊𝑊𝑘𝑘
[𝑚𝑚,𝑁𝑁](𝑢𝑢; 𝑧𝑧) = ∫ ∑(−1)𝑗𝑗−1

𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) ∑ 𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗)
𝑁𝑁

𝑛𝑛=1
𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧, 𝑗𝑗)𝑑𝑑𝑗𝑗,

+∞

−∞
                                  (1.3) 
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where 𝑧𝑧, 𝑠𝑠 ∈ 𝑅𝑅, 𝑘𝑘 ∈ 𝑍𝑍+ and 𝐺𝐺𝑘𝑘,𝑛𝑛,  𝐺𝐺𝑘𝑘,𝑛𝑛: 𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅0
+.  

 Lebesgue space 𝐿𝐿𝑝𝑝(𝑅𝑅) with 1 ≤ 𝑝𝑝 < ∞ is consisting of all 
functions 𝑢𝑢: 𝑅𝑅 → 𝑅𝑅 which are measurable on 𝑅𝑅 in the sense of Lebesgue 
such that ∫ |𝑢𝑢(𝑠𝑠)|𝑝𝑝𝑑𝑑𝑠𝑠+∞

−∞ < ∞. The norm of the function in 𝐿𝐿𝑝𝑝(𝑅𝑅) is 
stated as follows: 

‖𝑢𝑢‖𝑝𝑝 = (∫ |𝑢𝑢(𝑠𝑠)|𝑝𝑝𝑑𝑑𝑠𝑠
+∞

−∞
)

1/𝑝𝑝
, 1 ≤ 𝑝𝑝 < ∞ . 

The current study is a continuation and a generalization of (Esen-
Almalı et al., 2017; Serin, 2020) for 𝐿𝐿𝑝𝑝(𝑅𝑅). The chapter is organized as 
follows: In Section 2, we present preliminary concepts and prove main 
results. In Section 3, we give conclusions. 

 

2. PRINCIPAL CONTRIBUTIONS 

Definition 2.1. (Esen-Almalı, 2017; Esen-Almalı et al., 2017) Let 𝑘𝑘 ∈ 𝑍𝑍+ 
and 𝑁𝑁 ∈ 𝑍𝑍+ be fixed. The sequence of kernel functions {𝐺𝐺𝑘𝑘,𝑛𝑛}𝑘𝑘∈𝑍𝑍+  
consisting of the functions 𝐺𝐺𝑘𝑘,𝑛𝑛: 𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅0

+ for each 𝑛𝑛 = 1,2, … , 𝑁𝑁 
satisfies the following conditions: 

(𝑎𝑎) lim
𝑘𝑘→+∞

|∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧, 𝑠𝑠)𝑑𝑑𝑠𝑠 − 𝐶𝐶𝑛𝑛
+∞

−∞ | = 0, where 𝐶𝐶𝑛𝑛 are certain positive 

constants, for any fixed  𝑧𝑧 ∈ 𝑅𝑅 and 𝑛𝑛 = 1,2, … , 𝑁𝑁. 

(𝑏𝑏) lim
𝑘𝑘→+∞

sup
|𝑧𝑧−𝑠𝑠|≥𝛾𝛾

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧, 𝑠𝑠) = 0 for every 𝛾𝛾 > 0, for any fixed 𝑧𝑧 ∈ 𝑅𝑅 and 

𝑛𝑛 = 1,2, … , 𝑁𝑁. 

(𝑐𝑐) lim
𝑘𝑘→+∞ ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧, 𝑠𝑠)𝑑𝑑𝑠𝑠|𝑧𝑧−𝑠𝑠|≥𝛾𝛾 = 0 for every 𝛾𝛾 > 0, for any fixed 𝑧𝑧 ∈ 𝑅𝑅 

and 𝑛𝑛 = 1,2, … , 𝑁𝑁. 

(𝑑𝑑) 𝐺𝐺𝑘𝑘,𝑛𝑛 is non-decreasing for 𝑠𝑠 < 𝑧𝑧 and non-increasing for 𝑠𝑠 > 𝑧𝑧 with 
respect to 𝑠𝑠 on 𝑅𝑅, for any fixed 𝑧𝑧 ∈ 𝑅𝑅, 𝑘𝑘 ∈ 𝑍𝑍+ and 𝑛𝑛 = 1,2, … , 𝑁𝑁. 

This class of kernel functions is called 𝐺𝐺; see also (Butzer & Nessel, 
1971; Esen-Almalı & Gadjiev, 2016; Karslı, 2014; Uysal, 2018). 

Definition 2.2. Let 1 ≤ 𝑝𝑝 < +∞ and 𝑛𝑛 ∈ 𝑍𝑍+ be a fixed. The point 
𝑧𝑧0 ∈ 𝑅𝑅 at which 
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where 𝑧𝑧, 𝑠𝑠 ∈ 𝑅𝑅, 𝑘𝑘 ∈ 𝑍𝑍+ and 𝐺𝐺𝑘𝑘,𝑛𝑛,  𝐺𝐺𝑘𝑘,𝑛𝑛: 𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅0
+.  

 Lebesgue space 𝐿𝐿𝑝𝑝(𝑅𝑅) with 1 ≤ 𝑝𝑝 < ∞ is consisting of all 
functions 𝑢𝑢: 𝑅𝑅 → 𝑅𝑅 which are measurable on 𝑅𝑅 in the sense of Lebesgue 
such that ∫ |𝑢𝑢(𝑠𝑠)|𝑝𝑝𝑑𝑑𝑠𝑠+∞

−∞ < ∞. The norm of the function in 𝐿𝐿𝑝𝑝(𝑅𝑅) is 
stated as follows: 

‖𝑢𝑢‖𝑝𝑝 = (∫ |𝑢𝑢(𝑠𝑠)|𝑝𝑝𝑑𝑑𝑠𝑠
+∞

−∞
)

1/𝑝𝑝
, 1 ≤ 𝑝𝑝 < ∞ . 

The current study is a continuation and a generalization of (Esen-
Almalı et al., 2017; Serin, 2020) for 𝐿𝐿𝑝𝑝(𝑅𝑅). The chapter is organized as 
follows: In Section 2, we present preliminary concepts and prove main 
results. In Section 3, we give conclusions. 

 

2. PRINCIPAL CONTRIBUTIONS 

Definition 2.1. (Esen-Almalı, 2017; Esen-Almalı et al., 2017) Let 𝑘𝑘 ∈ 𝑍𝑍+ 
and 𝑁𝑁 ∈ 𝑍𝑍+ be fixed. The sequence of kernel functions {𝐺𝐺𝑘𝑘,𝑛𝑛}𝑘𝑘∈𝑍𝑍+  
consisting of the functions 𝐺𝐺𝑘𝑘,𝑛𝑛: 𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅0

+ for each 𝑛𝑛 = 1,2, … , 𝑁𝑁 
satisfies the following conditions: 

(𝑎𝑎) lim
𝑘𝑘→+∞

|∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧, 𝑠𝑠)𝑑𝑑𝑠𝑠 − 𝐶𝐶𝑛𝑛
+∞

−∞ | = 0, where 𝐶𝐶𝑛𝑛 are certain positive 

constants, for any fixed  𝑧𝑧 ∈ 𝑅𝑅 and 𝑛𝑛 = 1,2, … , 𝑁𝑁. 

(𝑏𝑏) lim
𝑘𝑘→+∞

sup
|𝑧𝑧−𝑠𝑠|≥𝛾𝛾

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧, 𝑠𝑠) = 0 for every 𝛾𝛾 > 0, for any fixed 𝑧𝑧 ∈ 𝑅𝑅 and 

𝑛𝑛 = 1,2, … , 𝑁𝑁. 

(𝑐𝑐) lim
𝑘𝑘→+∞ ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧, 𝑠𝑠)𝑑𝑑𝑠𝑠|𝑧𝑧−𝑠𝑠|≥𝛾𝛾 = 0 for every 𝛾𝛾 > 0, for any fixed 𝑧𝑧 ∈ 𝑅𝑅 

and 𝑛𝑛 = 1,2, … , 𝑁𝑁. 

(𝑑𝑑) 𝐺𝐺𝑘𝑘,𝑛𝑛 is non-decreasing for 𝑠𝑠 < 𝑧𝑧 and non-increasing for 𝑠𝑠 > 𝑧𝑧 with 
respect to 𝑠𝑠 on 𝑅𝑅, for any fixed 𝑧𝑧 ∈ 𝑅𝑅, 𝑘𝑘 ∈ 𝑍𝑍+ and 𝑛𝑛 = 1,2, … , 𝑁𝑁. 

This class of kernel functions is called 𝐺𝐺; see also (Butzer & Nessel, 
1971; Esen-Almalı & Gadjiev, 2016; Karslı, 2014; Uysal, 2018). 

Definition 2.2. Let 1 ≤ 𝑝𝑝 < +∞ and 𝑛𝑛 ∈ 𝑍𝑍+ be a fixed. The point 
𝑧𝑧0 ∈ 𝑅𝑅 at which 

lim
ℎ→0+

1
𝜇𝜇(ℎ) ∫ |∑(−1)𝑗𝑗−1

𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝑑𝑑𝑗𝑗 = 0
𝑧𝑧0+ℎ

𝑧𝑧0

 

and 

lim
ℎ→0+

1
𝜇𝜇(ℎ) ∫ |∑(−1)𝑗𝑗−1

𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝑑𝑑𝑗𝑗 = 0
𝑧𝑧0

𝑧𝑧0−ℎ
 

hold, is called 𝑚𝑚 − 𝜇𝜇 − 𝑝𝑝 −generalized Lebesgue point of a globally 
bounded function 𝑢𝑢 ∈ 𝐿𝐿𝑝𝑝(𝑅𝑅). Here, where 𝜇𝜇: 𝑅𝑅 → 𝑅𝑅 is an increasing and 
absolutely continuous function on [0, 𝛼𝛼] with 0 < ℎ ≤ 𝛼𝛼 and 𝜇𝜇(0) = 0 
(cf. (Mamedov, 1963) for 𝜇𝜇(𝑗𝑗) = 𝑗𝑗; (Gadjiev, 1968) for 𝑚𝑚 = 1)). 

For similar definitions and their variants, we advice the interested reader 
to see also  (Gadjiev, 1968; Karslı, 2014; Esen-Almalı et al., 2017). 

Now, we prove two pointwise convergence theorems. These theorems are 
of type Fatou (see (Fatou, 1906)). Similar theorems can be found in 
(Taberski, 1962; Karslı, 2014; Esen-Almalı et al., 2017; Uysal, 2018). 

Theorem 2.1. Let {𝐺𝐺𝑘𝑘,𝑛𝑛}𝑘𝑘∈𝑍𝑍+ ⊂ 𝐺𝐺. If 𝑧𝑧0 ∈ 𝑅𝑅 is a 𝑚𝑚 − 𝜇𝜇 −generalized 
Lebesgue point (𝑝𝑝 = 1) of function 𝑢𝑢 ∈ 𝐿𝐿1(𝑅𝑅) and 𝑢𝑢 is bounded on 𝑅𝑅, 
then 

lim
𝑘𝑘→+∞

𝑊𝑊𝑘𝑘
[𝑚𝑚,𝑁𝑁] (𝑢𝑢; 𝑧𝑧0) = ∑ 𝐶𝐶𝑛𝑛𝑢𝑢𝑛𝑛(𝑧𝑧0),

𝑁𝑁

𝑛𝑛=1
 

on any set 𝑄𝑄1 consisting of (𝛿𝛿, 𝑘𝑘) on which the function 

∑ ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)|{𝜇𝜇(|𝑧𝑧0 − 𝑗𝑗|)}𝑠𝑠
′ |𝑑𝑑𝑗𝑗

𝑧𝑧0+𝛿𝛿

𝑧𝑧0−𝛿𝛿
,

𝑁𝑁

𝑛𝑛=1
 

where 0 < 𝛿𝛿 < 𝛿𝛿∗ with certain 𝛿𝛿∗ > 0, is bounded as 𝑘𝑘 tends to +∞. 

Proof. Denote 

𝐴𝐴𝑘𝑘 ≔ |𝑊𝑊𝑘𝑘
[𝑚𝑚,𝑁𝑁](𝑢𝑢; 𝑧𝑧0) − ∑ 𝐶𝐶𝑛𝑛𝑢𝑢𝑛𝑛(𝑧𝑧0)

𝑁𝑁

𝑛𝑛=1
|. 

Therefore, the following inequality holds: 
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|𝐴𝐴𝑘𝑘| ≤ | ∫ ∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) ∑[𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]
𝑁𝑁

𝑛𝑛=1
𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗

+∞

−∞
| 

+ ∑|𝑢𝑢𝑛𝑛(𝑧𝑧0)|
𝑁𝑁

𝑛𝑛=1
| ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗 − 𝐶𝐶𝑛𝑛

∞

−∞
|. 

By condition (𝑎𝑎), one has 

lim
𝑘𝑘→+∞

∑|𝑢𝑢𝑛𝑛(𝑧𝑧0)|
𝑁𝑁

𝑛𝑛=1
| ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗 − 𝐶𝐶𝑛𝑛

∞

−∞
| = 0. 

Denote 

|𝐴𝐴1,𝑘𝑘| = | ∫ ∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) ∑[𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]
𝑁𝑁

𝑛𝑛=1
𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗

+∞

−∞
|. 

Moreover, one has 

|𝐴𝐴1,𝑘𝑘| ≤ ∑ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞

𝑁𝑁

𝑛𝑛=1
 

=: ∑ 𝐴𝐴2,𝑛𝑛,𝑘𝑘,
𝑁𝑁

𝑛𝑛=1
 

where  

𝐴𝐴2,𝑛𝑛,𝑘𝑘 = ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗.
+∞

−∞
 

Since 𝑧𝑧0 is a 𝑚𝑚 − 𝜇𝜇 −generalized Lebesgue point of function 𝑢𝑢 ∈
𝐿𝐿1(𝑅𝑅), for every given 𝜀𝜀 > 0 there exists a number 𝛿𝛿 > 0 such that 

∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝑑𝑑𝑗𝑗 < 𝜀𝜀𝜇𝜇(ℎ)
𝑧𝑧0+ℎ

𝑧𝑧0

                    (2.1) 

and 



International Studies in Science and Mathematics - June 2025 105

|𝐴𝐴𝑘𝑘| ≤ | ∫ ∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) ∑[𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]
𝑁𝑁

𝑛𝑛=1
𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗

+∞

−∞
| 

+ ∑|𝑢𝑢𝑛𝑛(𝑧𝑧0)|
𝑁𝑁

𝑛𝑛=1
| ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗 − 𝐶𝐶𝑛𝑛

∞

−∞
|. 

By condition (𝑎𝑎), one has 

lim
𝑘𝑘→+∞

∑|𝑢𝑢𝑛𝑛(𝑧𝑧0)|
𝑁𝑁

𝑛𝑛=1
| ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗 − 𝐶𝐶𝑛𝑛

∞

−∞
| = 0. 

Denote 

|𝐴𝐴1,𝑘𝑘| = | ∫ ∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) ∑[𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]
𝑁𝑁

𝑛𝑛=1
𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗

+∞

−∞
|. 

Moreover, one has 

|𝐴𝐴1,𝑘𝑘| ≤ ∑ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞

𝑁𝑁

𝑛𝑛=1
 

=: ∑ 𝐴𝐴2,𝑛𝑛,𝑘𝑘,
𝑁𝑁

𝑛𝑛=1
 

where  

𝐴𝐴2,𝑛𝑛,𝑘𝑘 = ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗.
+∞

−∞
 

Since 𝑧𝑧0 is a 𝑚𝑚 − 𝜇𝜇 −generalized Lebesgue point of function 𝑢𝑢 ∈
𝐿𝐿1(𝑅𝑅), for every given 𝜀𝜀 > 0 there exists a number 𝛿𝛿 > 0 such that 

∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝑑𝑑𝑗𝑗 < 𝜀𝜀𝜇𝜇(ℎ)
𝑧𝑧0+ℎ

𝑧𝑧0

                    (2.1) 

and 

∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝑑𝑑𝑗𝑗 < 𝜀𝜀𝜀𝜀(ℎ)
𝑧𝑧0

𝑧𝑧0−ℎ
                (2.2) 

hold for every ℎ satisfying  0 < ℎ ≤ 𝛿𝛿. 

We split the integral 𝐴𝐴2,𝑛𝑛,𝑘𝑘 with respect to this 𝛿𝛿 > 0 as follows: 

𝐴𝐴2,𝑛𝑛,𝑘𝑘 = ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0+𝛿𝛿

𝑧𝑧0

 

+ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0

𝑧𝑧0−𝛿𝛿
 

+ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0−𝛿𝛿

−∞
 

+ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

𝑧𝑧0+𝛿𝛿
 

=: 𝐴𝐴2,𝑛𝑛,𝑘𝑘[1] + 𝐴𝐴2,𝑛𝑛,𝑘𝑘[2] + 𝐴𝐴2,𝑛𝑛,𝑘𝑘[3] + 𝐴𝐴2,𝑛𝑛,𝑘𝑘[4]. 

We know that 𝑢𝑢 is bounded on 𝑅𝑅. Using condition (𝑑𝑑), there holds that 

𝐴𝐴2,𝑛𝑛,𝑘𝑘[3] ≤ 2𝑚𝑚|𝑢𝑢𝑛𝑛(𝑧𝑧0)| ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0−𝛿𝛿

−∞
 

               + ‖∑ (𝑚𝑚
𝑗𝑗 )𝑚𝑚

𝑗𝑗=1 𝑢𝑢𝑛𝑛(𝑗𝑗 ∗)‖
1

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑧𝑧0 − 𝛿𝛿). 

Similarly, we obtain 

𝐴𝐴2,𝑛𝑛,𝑘𝑘[4] ≤ 2𝑚𝑚|𝑢𝑢𝑛𝑛(𝑧𝑧0)| ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

𝑧𝑧0+𝛿𝛿
 

               + ‖∑ (𝑚𝑚
𝑗𝑗 )𝑚𝑚

𝑗𝑗=1 𝑢𝑢𝑛𝑛(𝑗𝑗 ∗)‖
1

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑧𝑧0 + 𝛿𝛿). 

In view of conditions (𝑐𝑐) and (𝑏𝑏), 
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lim
𝑘𝑘→+∞

𝐴𝐴2,𝑛𝑛,𝑘𝑘[3] = 0 

and  

lim
𝑘𝑘→+∞

𝐴𝐴2,𝑛𝑛,𝑘𝑘[4] = 0. 

In view of equation (2.1) and making standard operations as in, for 
example,  (Esen-Almalı, 2017; Esen-Almalı et al., 2017), we get 

𝐴𝐴2,𝑛𝑛,𝑘𝑘[1] ≤ 𝜀𝜀 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(𝑠𝑠 − 𝑧𝑧0)}𝑠𝑠
′ |𝑑𝑑𝑠𝑠.

𝑧𝑧0+𝛿𝛿

𝑧𝑧0
 

Similarly, In view of equation (2.2), we get 

𝐴𝐴2,𝑛𝑛,𝑘𝑘[2] ≤ 𝜀𝜀 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(𝑧𝑧0 − 𝑠𝑠)}𝑠𝑠
′ |𝑑𝑑𝑠𝑠.

𝑧𝑧0

𝑧𝑧0−𝛿𝛿
 

Hence, we have 

𝐴𝐴2,𝑛𝑛,𝑘𝑘[1] + 𝐴𝐴2,𝑛𝑛,𝑘𝑘[2] ≤ 𝜀𝜀 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(|𝑠𝑠 − 𝑧𝑧0|)}𝑠𝑠
′ |𝑑𝑑𝑠𝑠.

𝑧𝑧0+𝛿𝛿

𝑧𝑧0−𝛿𝛿
 

Since 𝜀𝜀 > 0 is arbitrary, the proof is completed. 

Theorem 2.2. Let {𝐺𝐺𝑘𝑘,𝑛𝑛}𝑘𝑘∈𝑍𝑍+ ⊂ 𝐺𝐺. If 𝑧𝑧0 ∈ 𝑅𝑅 is a 𝑚𝑚 − 𝜇𝜇 −
𝑝𝑝 −generalized Lebesgue point of function 𝑢𝑢 ∈ 𝐿𝐿𝑝𝑝(𝑅𝑅) with 1 < 𝑝𝑝 <
+∞ and 𝑢𝑢 is bounded on 𝑅𝑅, then 

lim
𝑘𝑘→+∞

𝑊𝑊𝑘𝑘
[𝑚𝑚,𝑁𝑁] (𝑢𝑢; 𝑧𝑧0) = ∑ 𝐶𝐶𝑛𝑛𝑢𝑢𝑛𝑛(𝑧𝑧0),

𝑁𝑁

𝑛𝑛=1
 

on any set 𝑄𝑄2 consisting of (𝛿𝛿, 𝑘𝑘)  on which the function 

∑ ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(|𝑧𝑧0 − 𝑠𝑠|)}𝑠𝑠
′ |𝑑𝑑𝑠𝑠

𝑧𝑧0+𝛿𝛿

𝑧𝑧0−𝛿𝛿
,

𝑁𝑁

𝑛𝑛=1
 

where 0 < 𝛿𝛿 < 𝛿𝛿∗ with certain 𝛿𝛿∗ > 0, is bounded as 𝑘𝑘 tends to +∞. 

Proof. Set 

𝐵𝐵𝑘𝑘 ≔ |𝑊𝑊𝑘𝑘
[𝑚𝑚,𝑁𝑁](𝑢𝑢; 𝑧𝑧0) − ∑ 𝐶𝐶𝑛𝑛𝑢𝑢𝑛𝑛(𝑧𝑧0)

𝑁𝑁

𝑛𝑛=1
|. 
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lim
𝑘𝑘→+∞

𝐴𝐴2,𝑛𝑛,𝑘𝑘[3] = 0 

and  

lim
𝑘𝑘→+∞

𝐴𝐴2,𝑛𝑛,𝑘𝑘[4] = 0. 

In view of equation (2.1) and making standard operations as in, for 
example,  (Esen-Almalı, 2017; Esen-Almalı et al., 2017), we get 

𝐴𝐴2,𝑛𝑛,𝑘𝑘[1] ≤ 𝜀𝜀 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(𝑠𝑠 − 𝑧𝑧0)}𝑠𝑠
′ |𝑑𝑑𝑠𝑠.

𝑧𝑧0+𝛿𝛿

𝑧𝑧0
 

Similarly, In view of equation (2.2), we get 

𝐴𝐴2,𝑛𝑛,𝑘𝑘[2] ≤ 𝜀𝜀 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(𝑧𝑧0 − 𝑠𝑠)}𝑠𝑠
′ |𝑑𝑑𝑠𝑠.

𝑧𝑧0

𝑧𝑧0−𝛿𝛿
 

Hence, we have 

𝐴𝐴2,𝑛𝑛,𝑘𝑘[1] + 𝐴𝐴2,𝑛𝑛,𝑘𝑘[2] ≤ 𝜀𝜀 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(|𝑠𝑠 − 𝑧𝑧0|)}𝑠𝑠
′ |𝑑𝑑𝑠𝑠.

𝑧𝑧0+𝛿𝛿

𝑧𝑧0−𝛿𝛿
 

Since 𝜀𝜀 > 0 is arbitrary, the proof is completed. 

Theorem 2.2. Let {𝐺𝐺𝑘𝑘,𝑛𝑛}𝑘𝑘∈𝑍𝑍+ ⊂ 𝐺𝐺. If 𝑧𝑧0 ∈ 𝑅𝑅 is a 𝑚𝑚 − 𝜇𝜇 −
𝑝𝑝 −generalized Lebesgue point of function 𝑢𝑢 ∈ 𝐿𝐿𝑝𝑝(𝑅𝑅) with 1 < 𝑝𝑝 <
+∞ and 𝑢𝑢 is bounded on 𝑅𝑅, then 

lim
𝑘𝑘→+∞

𝑊𝑊𝑘𝑘
[𝑚𝑚,𝑁𝑁] (𝑢𝑢; 𝑧𝑧0) = ∑ 𝐶𝐶𝑛𝑛𝑢𝑢𝑛𝑛(𝑧𝑧0),

𝑁𝑁

𝑛𝑛=1
 

on any set 𝑄𝑄2 consisting of (𝛿𝛿, 𝑘𝑘)  on which the function 

∑ ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(|𝑧𝑧0 − 𝑠𝑠|)}𝑠𝑠
′ |𝑑𝑑𝑠𝑠

𝑧𝑧0+𝛿𝛿

𝑧𝑧0−𝛿𝛿
,

𝑁𝑁

𝑛𝑛=1
 

where 0 < 𝛿𝛿 < 𝛿𝛿∗ with certain 𝛿𝛿∗ > 0, is bounded as 𝑘𝑘 tends to +∞. 

Proof. Set 

𝐵𝐵𝑘𝑘 ≔ |𝑊𝑊𝑘𝑘
[𝑚𝑚,𝑁𝑁](𝑢𝑢; 𝑧𝑧0) − ∑ 𝐶𝐶𝑛𝑛𝑢𝑢𝑛𝑛(𝑧𝑧0)

𝑁𝑁

𝑛𝑛=1
|. 

Therefore, we can write  

|𝐵𝐵𝑘𝑘| ≤ | ∫ ∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚𝑗𝑗 )∑[𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]

𝑁𝑁

𝑛𝑛=1
𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗

+∞

−∞
| 

+∑|𝑢𝑢𝑛𝑛(𝑧𝑧0)|
𝑁𝑁

𝑛𝑛=1
| ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗 − 𝐶𝐶𝑛𝑛

∞

−∞
|. 

By condition (𝑎𝑎), one has 

lim
𝑘𝑘→+∞

∑|𝑢𝑢𝑛𝑛(𝑧𝑧0)|
𝑁𝑁

𝑛𝑛=1
| ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗 − 𝐶𝐶𝑛𝑛

∞

−∞
| = 0. 

Set 

|𝐵𝐵1,𝑘𝑘| = | ∫ ∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚𝑗𝑗 )∑[𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]

𝑁𝑁

𝑛𝑛=1
𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗

+∞

−∞
|. 

The following inequality holds: 

|𝐵𝐵1,𝑘𝑘| ≤ ∑ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚𝑗𝑗 ) [𝑢𝑢

𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞

𝑁𝑁

𝑛𝑛=1
 

=:∑𝐵𝐵2,𝑛𝑛,𝑘𝑘,
𝑁𝑁

𝑛𝑛=1
 

where  

𝐵𝐵2,𝑛𝑛,𝑘𝑘 = ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚𝑗𝑗 ) [𝑢𝑢

𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞
 

 

We see that 

(𝐵𝐵2,𝑛𝑛,𝑘𝑘)
𝑝𝑝 = ( ∫ |∑(−1)𝑗𝑗−1

𝑚𝑚

𝑗𝑗=1
(𝑚𝑚𝑗𝑗 ) [𝑢𝑢

𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]| 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞
)
𝑝𝑝

. 
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Applying Hölder’s inequality with  1
𝑝𝑝 + 1

𝑞𝑞 = 1 for 1 < 𝑝𝑝, 𝑞𝑞 < +∞ (see, 

for example, (Rudin, 1987)), we get 

(𝐵𝐵2,𝑛𝑛,𝑘𝑘)𝑝𝑝 ≤ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞

× ( ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞
)

𝑝𝑝
𝑞𝑞

 

     =: 𝐵𝐵3,𝑛𝑛,𝑘𝑘 × ( ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞
)

𝑝𝑝
𝑞𝑞

. 

Here, the term  (∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗+∞
−∞ )

𝑝𝑝
𝑞𝑞 is bounded by condition (𝑎𝑎). 

Since 𝑧𝑧0 is a 𝑚𝑚 − 𝜇𝜇 − 𝑝𝑝 −generalized Lebesgue point of function 
𝑢𝑢 ∈ 𝐿𝐿𝑝𝑝(𝑅𝑅), for every given 𝜀𝜀 > 0 there exists a number 𝛿𝛿 > 0 such that 

∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝑑𝑑𝑗𝑗 < 𝜀𝜀𝜇𝜇(ℎ)
𝑧𝑧0+ℎ

𝑧𝑧0

                  (2.3) 

and 

∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝑑𝑑𝑗𝑗 < 𝜀𝜀𝜇𝜇(ℎ)
𝑧𝑧0

𝑧𝑧0−ℎ
                  (2.4) 

hold for every ℎ satisfying  0 < ℎ ≤ 𝛿𝛿. 

We split the integral 𝐵𝐵3,𝑛𝑛,𝑘𝑘 with respect to this 𝛿𝛿 > 0 as follows: 

𝐵𝐵3,𝑛𝑛,𝑘𝑘 = ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0+𝛿𝛿

𝑧𝑧0

 

+ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0

𝑧𝑧0−𝛿𝛿
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Applying Hölder’s inequality with  1
𝑝𝑝 + 1

𝑞𝑞 = 1 for 1 < 𝑝𝑝, 𝑞𝑞 < +∞ (see, 

for example, (Rudin, 1987)), we get 

(𝐵𝐵2,𝑛𝑛,𝑘𝑘)𝑝𝑝 ≤ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞

× ( ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞
)

𝑝𝑝
𝑞𝑞

 

     =: 𝐵𝐵3,𝑛𝑛,𝑘𝑘 × ( ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

−∞
)

𝑝𝑝
𝑞𝑞

. 

Here, the term  (∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗+∞
−∞ )

𝑝𝑝
𝑞𝑞 is bounded by condition (𝑎𝑎). 

Since 𝑧𝑧0 is a 𝑚𝑚 − 𝜇𝜇 − 𝑝𝑝 −generalized Lebesgue point of function 
𝑢𝑢 ∈ 𝐿𝐿𝑝𝑝(𝑅𝑅), for every given 𝜀𝜀 > 0 there exists a number 𝛿𝛿 > 0 such that 

∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝑑𝑑𝑗𝑗 < 𝜀𝜀𝜇𝜇(ℎ)
𝑧𝑧0+ℎ

𝑧𝑧0

                  (2.3) 

and 

∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝑑𝑑𝑗𝑗 < 𝜀𝜀𝜇𝜇(ℎ)
𝑧𝑧0

𝑧𝑧0−ℎ
                  (2.4) 

hold for every ℎ satisfying  0 < ℎ ≤ 𝛿𝛿. 

We split the integral 𝐵𝐵3,𝑛𝑛,𝑘𝑘 with respect to this 𝛿𝛿 > 0 as follows: 

𝐵𝐵3,𝑛𝑛,𝑘𝑘 = ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0+𝛿𝛿

𝑧𝑧0

 

+ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0

𝑧𝑧0−𝛿𝛿
 

+ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0−𝛿𝛿

−∞
 

+ ∫ |∑(−1)𝑗𝑗−1
𝑚𝑚

𝑗𝑗=1
(𝑚𝑚

𝑗𝑗 ) [𝑢𝑢𝑛𝑛(𝑗𝑗𝑗𝑗) − 𝑢𝑢𝑛𝑛(𝑧𝑧0)]|
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

𝑧𝑧0+𝛿𝛿
 

=: 𝐵𝐵3,𝑛𝑛,𝑘𝑘[1] + 𝐵𝐵3,𝑛𝑛,𝑘𝑘[2] + 𝐵𝐵3,𝑛𝑛,𝑘𝑘[3] + 𝐵𝐵3,𝑛𝑛,𝑘𝑘[4]. 

Using condition (𝑑𝑑), there holds that 

𝐵𝐵3,𝑛𝑛,𝑘𝑘[3] ≤ 2(𝑚𝑚+1)𝑝𝑝|𝑢𝑢𝑛𝑛(𝑧𝑧0)|𝑝𝑝 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
𝑧𝑧0−𝛿𝛿

−∞
 

               +2𝑝𝑝 (‖∑ (𝑚𝑚
𝑗𝑗 )𝑚𝑚

𝑗𝑗=1 𝑢𝑢𝑛𝑛(𝑗𝑗 ∗)‖
𝑝𝑝

)
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑧𝑧0 − 𝛿𝛿). 

Similarly, we obtain 

𝐵𝐵3,𝑛𝑛,𝑘𝑘[4] ≤ 2(𝑚𝑚+1)𝑝𝑝|𝑢𝑢𝑛𝑛(𝑧𝑧0)|𝑝𝑝 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)𝑑𝑑𝑗𝑗
+∞

𝑧𝑧0+𝛿𝛿
 

               +2𝑝𝑝 (‖∑ (𝑚𝑚
𝑗𝑗 )𝑚𝑚

𝑗𝑗=1 𝑢𝑢𝑛𝑛(𝑗𝑗 ∗)‖
𝑝𝑝

)
𝑝𝑝

𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑧𝑧0 + 𝛿𝛿). 

We know that 𝑢𝑢 is bounded on 𝑅𝑅. In view of conditions (𝑐𝑐) and (𝑏𝑏), 

lim
𝑘𝑘→+∞

𝐵𝐵3,𝑛𝑛,𝑘𝑘[3] = 0 

and  

lim
𝑘𝑘→+∞

𝐵𝐵3,𝑛𝑛,𝑘𝑘[4] = 0. 

In view of equation (2.3) and making standard operations as in, for 
example,  (Esen-Almalı, 2017; Esen-Almalı et al., 2017), we obtain 

𝐵𝐵3,𝑛𝑛,𝑘𝑘[1] ≤ 𝜀𝜀 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑗𝑗)|{𝜇𝜇(𝑗𝑗 − 𝑧𝑧0)}𝑠𝑠
′ |𝑑𝑑𝑗𝑗.

𝑧𝑧0+𝛿𝛿

𝑧𝑧0
 

Similarly, In view of equation (2.4), we get 
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𝐵𝐵3,𝑛𝑛,𝑘𝑘[2] ≤ 𝜀𝜀 ∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(𝑧𝑧0 − 𝑠𝑠)}𝑠𝑠′ |𝑑𝑑𝑠𝑠.
𝑧𝑧0

𝑧𝑧0−𝛿𝛿
 

Hence, we have 

𝐵𝐵3,𝑛𝑛,𝑘𝑘[1] + 𝐵𝐵3,𝑛𝑛,𝑘𝑘[2] ≤ 𝜀𝜀∫ 𝐺𝐺𝑘𝑘,𝑛𝑛(𝑧𝑧0, 𝑠𝑠)|{𝜇𝜇(|𝑠𝑠 − 𝑧𝑧0|)}𝑠𝑠′ |𝑑𝑑𝑠𝑠.
𝑧𝑧0+𝛿𝛿

𝑧𝑧0−𝛿𝛿
 

Since 𝜀𝜀 > 0 is arbitrary, the proof is completed. 

 

3. CONCLUSION 

This study is devoted to the rigorous analysis of the 𝑚𝑚 − singular 
modifications of the operators defined in equation (1.2), with particular 
attention given to establishing a pointwise approximation theorem. The 
modified operators serve as a natural extension of classical integral 
constructs and are of significant interest due to their enhanced 
approximation capabilities, particularly in handling higher-order 
behaviors of functions. Furthermore, the class of operators introduced in 
equation (1.3) opens up several avenues for future research, especially 
within the framework of nonlinear approximation theory. Their structural 
flexibility and potential to accommodate various kernel functions make 
them a promising tool for addressing complex approximation problems, 
including those involving irregular data or non-standard functional 
spaces. 
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INTRODUCTION

Polymer latexes, equivalently termed colloidal polymer dispersions, 
are extensively employed across diverse technological domains, including 
coatings, adhesives, biomedical applications, information technology, and 
microelectronics. A notable characteristic of these materials is their re-
markable optical clarity, which persists even when incorporated with rein-
forcing nanofillers [1]. Latex films are generally formed by coalescence of 
submicrometer polymer particles in the form of a colloidal dispersion, usu-
ally in water. The term “latex film” normally refers to a film formed from 
soft latex particles (Tg below room temperature) where the forces accom-
panying the evaporation of water are sufficient to compress and deform 
the particles into a transparent, void-free film. Latex films are typically 
fabricated through the coalescence of submicrometer polymer particles, 
initially present within a colloidal dispersion, most commonly an aque-
ous medium. The designation ‘latex film’ conventionally refers to a film 
derived from compliant (low glass transition temperature, Tg <25∘C) la-
tex particles, where capillary forces generated during solvent evaporation 
induce sufficient particle compression and deformation to yield a trans-
parent, void-free monodisperse structure. Conversely, latex films can also 
be produced through compression molding of films fabricated from dried 
latex powder. These powders are composed of relatively rigid polymers, 
such as polystyrene (PS) or poly(methyl methacrylate) (PMMA), charac-
terized by a glass transition temperature (Tg ) exceeding ambient tempera-
ture. Aqueous dispersions comprising compliant latex particles are con-
ventionally termed ‘low-Tg ‘ dispersions, while non-aqueous dispersions of 
rigid polymer particles are generally referred to as ‘high-Tg ‘ dispersions.

During the drying process, high-Tg  latex particles largely maintain 
their discrete morphology and remain undeformed. The mechanical prop-
erties of films derived from such particles are subsequently enhanced 
post-solvent evaporation through an annealing process. This thermal 
treatment initially facilitates void closure, followed by the interdiffusion 
of polymer chains across particle–particle boundaries, contributing to the 
macroscopic integrity and mechanical performance of the film [2].

The diverse applications of polymer nanocomposites are directly att-
ributable to their tunable optical, electrical, and mechanical properties 
[3–7]. In this study, polystyrene (PS), a polymer with a high glass transi-
tion temperature (Tg =105∘C), was utilized. The high Tg  of PS signifies its 
rigid, glassy state at ambient conditions, which is crucial for achieving the 
desired mechanical and optical properties in the resulting films. Polysty-
rene (PS), a polymer characterized by a high glass transition temperature 
(Tg=105∘C), exhibits a combination of properties that make it highly va-

M. Selin SUNAY, Abdelhamid ELAISSARI



International Studies in Science and Mathematics - June 2025 115

luable for various industrial applications [8,9]. These properties include 
exceptional durability, high optical transparency, a notable refractive in-
dex (approximately 1.60), excellent electrical insulation, and minimal wa-
ter absorption, coupled with efficient processing characteristics. Further-
more, PS demonstrates superior optical qualities, encompassing inherent 
clarity and a high refractive index, and while typically achiral, its optical 
behavior is well-defined [10]. Due to this confluence of advantageous 
properties, PS is frequently selected as the primary matrix material for 
investigating the optical characteristics of polymer nanocomposites[11]. 

Considerable research efforts have recently focused on the develop-
ment of organic/inorganic composite materials with tailored compositi-
ons. The intrinsic self-assembly capabilities of colloidal latex particles 
enable their utilization as sacrificial templates for the fabrication of po-
rous nanoparticle films. Porous materials have garnered significant scien-
tific and industrial interest due to their versatile applications, including 
their deployment as heterogeneous catalysts [12-15], scaffolds for dire-
cted nanomaterial synthesis [16-20], substrates for cell culture [21-23], 
advanced separation media [24-26], and anti-reflective coatings [27-29]. 
The synthesis of nano- and meso-sized spheres yields highly valuable 
materials that can serve diverse functions, including hollow particles, 
drug delivery vehicles, confined nano- and meso-scale reaction vessels, 
and protective encapsulation shells [30]. Furthermore, the tailored utili-
zation of these structured particles facilitates the production of various 
innovative functional products, such as photonic crystals [31] and porous 
inorganic architectures [32]. Recent research has extensively documen-
ted the fabrication of ordered polymer arrays (e.g., polystyrene) or silica 
nanospheres specifically for advanced photonic crystal applications [23, 
25]. Macroporous films exhibit pronounced photonic band gaps, which 
can be precisely tuned by manipulating the periodicity and diameter of 
the templating structures. Photonic crystals, defined as spatially periodic 
dielectric materials with varying refractive indices, have been a subject 
of extensive investigation in the scientific literature. Analogous to semi-
conductors that regulate electron emission, these materials are capable of 
controlling photon emission, provided their lattice constant is commen-
surate with visible or infrared wavelengths. To fully realize their potenti-
al across a broad spectrum of optical applications, considerable research 
efforts have been dedicated to the theoretical prediction and experimental 
fabrication of three-dimensional (3D) complete photonic band gap stru-
ctures [33]. Recent advancements have reinvigorated research interest in 
these structures, shifting focus from complex semiconductor nanolithog-
raphy techniques towards the fabrication of 3D photonic crystals active 
within the optical wavelength range. This shift is driven by the inherent 
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advantages of these novel approaches, including enhanced simplicity, im-
proved time efficiency, and significant financial benefits [34-36].

For this reason, we examined the polymer/metal oxide nanocomposite 
films obtained by coating the polymers we used with TiO2 and ZnO inorgan-
ic materials according to different parameters. For this purpose, TiO2, one of 
the inorganic particles we used, is the most popular substance among photo-
catalysts due to its non-toxicity, reliability, high stability, cost-effectiveness 
and abundance properties. In experiments with lethal or growth inhibitory 
bacteria, this compound was mainly used due to its physicochemical stabil-
ity, non-toxicity, biocompatibility and low costs [37-39].

Its photocatalytic activity enables the degradation or complete mine-
ralization of a broad spectrum of atmospheric contaminants. These inc-
lude, but are not limited to, nitrogenous and sulfurous compounds, vo-
latile organic compounds (VOCs) emitted from construction materials, 
various greenhouse gases, components of cigarette smoke, and ubiqui-
tous atmospheric pollutants such as chlorofluorocarbons (CFCs) [40-41]. 
Among the myriad of inorganic materials, zinc oxide (ZnO) stands out 
as a highly compelling semiconductor. The incorporation of ZnO as a 
filler into polymer matrices has been shown to effectively modulate their 
optical, electrical, and mechanical properties [44-48]. Specifically, ZnO/
polystyrene (PS) nanocomposites have demonstrated utility in applicati-
ons such as anti-reflective coatings, ultraviolet (UV) protective films, and 
materials exhibiting enhanced thermal stability. Notably, their efficacy in 
UV shielding applications has been well-documented [49].

Our aim in this study is to characterize the optical properties, film 
formation behaviors and surface morphologies of both the films obtained 
by coating two different types of polymers on glass surfaces with cer-
tain thicknesses and the nanocomposite films obtained by coating these 
polymer films with different types and particle sizes of metal oxides in 
different layer numbers, depending on different parameters, and to obtain 
regular periodic structures at the nanoscale. The progressive formation of 
latex films from polystyrene (PS) particles was investigated as a functi-
on of temperature and time using the photon transmission method, with 
measurements conducted via UV-visible (UV-Vis) spectroscopy. For this 
purpose, the film formation behaviors of thin latex films obtained from 
polystyrene (PS) particles and nanocomposite systems obtained by coating 
them with metal oxides of different types and sizes were investigated as a 
function of temperature and time using the UV-visible (UVV) technique. 
The evolution of polystyrene (PS) latex film formation was systematically 
investigated using the photon transmission method, specifically employing 
UV-Visible (UV-Vis) spectroscopy. Samples were subjected to incremen-



International Studies in Science and Mathematics - June 2025 117

tal annealing steps, with temperatures ranging from 100∘C to 250∘C in 
10∘C increments, ensuring all treatments were performed above the glass 
transition temperature (Tg) of the polymers under study. Following each 
annealing cycle, the optical transmission of the films was monitored at a 
wavelength of 550 nm. A bare glass plate served as the reference standard 
for all UV-Vis experiments, and all measurements were conducted at am-
bient temperature after the annealing process. In addition, the changes in 
the morphological structures of the films were followed by SEM.

 EXPERIMENTAL 

 Fabrication of Pure Polystyrene (PS) Latex Films

Latex-based, Pyrene(P) labeled PS latex particles were synthesized by A. 
Elaissari in France by surfactant-free emulsion polymerization. Pyrene-(P) 
was used as a fluorescent molecule and was covalently labeled to the poly-
mer chains during polymerization. The particle size distribution of PS poly-
mer was measured in the Malvern Zetasizer Nano ZS-3600 device operating 
with laser technique and the average particle size was determined as 475nm 
for PS. The glass transition temperature of the PS polymer is 105°C, its den-
sity is 1.05 g/cm3 and its average molecular weight is Mw~2.779 1017 g.mol-1.  
In order to ensure homogeneous distribution, polymer latexes were mixed 
for a certain period of time at room temperature in a magnetic stirrer, then 
applied to glass surfaces of 2.5x2.5 cm2 that had been cleaned with alcohol, 
via the drop-casting method at ambient temperature, in equal numbers of 
drops to give films of the same thickness (d= 3.5 - 4μm), and finally left to 
dry at room temperature for 24 hours to obtain pure polymer latex films. A 
schematic illustration of these steps is provided in Figure 1.

Figure 1: Preparation of pure polymer films.
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The PS films left to dry at room temperature formed an opaque coat-
ing. To find the thickness of the films, the glass plates were weighed be-
fore and after coating. 

Preparation of PS/Metal Oxide Nanocomposite Films

Nanoparticles in metal oxide suspensions of ZnO (15nm and 40nm) 
and TiO2 (15nm and 40nm) with different particle sizes have a strong ten-
dency to agglomerate due to their large surface areas. In order to prevent 
this and ensure the stabilization of metal oxide nanoparticles and to obtain 
a homogeneous distribution, a certain amount of the surfactant Pluronic 
F127 was incorporated into the metal oxide suspensions. The resulting 
mixture was subjected to continuous agitation using a magnetic stirrer 
for 3 hours at ambient temperature, followed by a quiescent period of 24 
hours, also at ambient temperature. In the last stage, pure PS polymer 
films were coated with 5 layers, 10 and 15 layers of 15nm sized (TiO2 and 
ZnO) and 40nm sized (TiO2 and ZnO) metal oxides using the spin coating 
method to produce polymer-metal oxide nanocomposite films with differ-
ent nanoparticle sizes, types and layer numbers and metal oxide contents. 
Then, these samples were annealed above the glass transition temperature 
of PS at temperatures between 100 0C and 250 0C for ten minutes. The 
temperature was maintained at 2∘C with a fluctuation of ±2∘C throughout 
the annealing period. These steps are shown schematically in Figure 2.

Figure 2: Preparation of PS/Metal Oxide Nanocomposite films.

METHODS

UVV Measurements

The optical transmittance intensity (Itr ) of the films was monitored 
at 550 nm. In these measurements, an empty glass surface was used as 
a reference and the base correction was made with this glass plate. The 
measurements after each annealing process were carried out at room tem-
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perature. The positions of the samples used in UVV measurements are 
shown in Figure 3, respectively.

Figure 3: Incident Light (I0) and light intensity passing through the film surface 
(Itr)

Field Emission Gun Scanning Electron Microscope (FEGSEM-E-
DS) Measurements

Morphological images of polymer and nanocomposite thin films were 
taken on a FEI QUANTA 450 FEG ESEM SEM microscope at 10–20 kV. 
A thin gold film (10 nm) was sputtered onto the surface of the samples 
using a Hummer-600 sputtering system to aid in imaging the metal oxide 
containing films against the glass background.

THEORETICAL ASSUPTIONS 

Viscous flow and void closure mechanism

Latex film formation involves the deformation of polymer particles and 
the subsequent elimination of interstitial voids. This process is primarily 
driven by the shear stress originating from the polymer’s surface tension 
(specifically, the polymer-air interfacial tension). The kinetics governing 
this void closure phenomenon directly dictate the ultimate optical trans-
parency and the overall time required for the latex film to fully form [50]. 
To quantitatively describe the shrinkage of a spherical void with initial 
radius r within a medium of viscosity η, a fundamental expression has 
been derived, which establishes the following relationship [51].

                                                  (4.1)

Here, γ represents the surface energy, t denotes time, and ρ(r) is a term 
reflecting the relative density. The surface energy drives the reduction 
in void size. The ρ(r) term itself is a function of several microstructural 
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parameters, including the number of voids within the material, the initial 
particle size, and the packing characteristics of the microstructure. Equa-
tion (4.1) exhibits a strong analogy to expressions describing the time de-
pendence of the minimum film formation temperature during latex film 
formation [52, 53]. Assuming that the viscosity, η, remains constant with 
respect to time, the integrated form of Equation (4.1) is given by:

                                                    (4.2)

Here r0  corresponds to the void radius at the initial time, t0. The influ-
ence of temperature on polymer fluidity is affected by the overcoming of 
the macromolecular forces that cause the polymer chain to jump from one 
equilibrium state to another. This stage occurs at temperatures where the 
free volume is sufficiently large and the potential barrier is overcome. The 
Frenkel-Eyring theory gives the temperature dependence of the fluidity as 
the following equation [54]

                                                              (4.3)

N0 is Avogadro’s number, h is Planck’s constant, V is the molar volume 
and k is the Boltzmann constant. Since ∆G = ∆H -T∆S , equation (4.3) can 
be written as follows.

                                                          (4.4)

∆H is the activation energy for a viscous fluid. For example, it is the 
amount of heat that must be given to one mole of substance to make it 
jump during viscous flow. ∆S is the activation entropy of a viscous fluid. 
Here A is a constant related to parameters that do not change with tem-
perature. The combination of equation (4.2) and equation (4.4) gives us a 
useful relationship.

                                           (4.5)
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Assuming that the interparticle voids are of equal diameter and the 
number of voids remains constant during film formation (i.e. ρ(r) ≈ r-3 

), we can use equation (4.5) to examine the above results. Integration of 
equation (4.5) gives the following relation.

                                                          (4.6)

C is a constant that depends on the relative density ρ(r). A decrease 
in the gap size (r) causes an increase in the Itr intensities. Since the 
scattering intensity (Isc) is proportional to the square of the volume (V) 
of the scattering body (Isc~V2) [55], I can be assumed to be inversely 
proportional to the sixth power of the gap radius (r) (I ~ r-6 ), so equation 
(4.6) can be written as:

                                                          (4.7)

Here r0
-2 is ignored because it is very small compared to the r-2 values   

after the void closure process has started. Equation (4.7) can be arranged 
algebraically to facilitate the interpretation of the experimental data, es-
pecially the transmitted light intensity (Itr) as a function of the annealing 
temperature (T∘C) for all investigated systems;

 =                                                     (4.8)

where S(t) = (λt / 2 AC)3. For a certain time, equation (4.8) can be writ-
ten in logarithmic form.

                                                 (4.9)

This equation gives us the activation energy (∆H) of the viscous flow 
by using the intensity of the transmitted light (Itr).
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RESULTS AND DISCUSSIONS

Optical behavior of pure PS and PMMA films

To monitor the progression of film formation and the concomitant de-
velopment of optical transparency, the transmitted light intensity (Itr ) was 
quantified following each annealing step. Figure 4 presents the Itr  curves 
for the pure polystyrene (PS) film, annealed at various temperatures.

The transmitted light intensity (Itr) exhibits a notable increase above a 
critical temperature, conventionally termed the minimum film formation 
temperature (T0). Within the coatings industry, T0 is a crucial parameter, 
serving as the primary indicator for the lowest effective temperature at 
which a latex dispersion can be successfully employed in various appli-
cations [56, 57, 58]. Fundamentally, T0 signifies the lowest temperature at 
which sufficient particle deformation occurs, enabling the reduction of in-
terstitial void diameters to dimensions significantly below the wavelength 
of visible light [59].

Below this critical temperature, the dried latex typically manifests as 
an opaque, powdery solid. Conversely, at or above T0 , the cast latex film 
undergoes a transition to a continuous and optically transparent state [60]. 
Consequently, in this investigation, T0  is empirically defined as the tem-
perature at which the transmitted light intensity (Itr ) exhibits an observab-
le increase. The observed increase in transmitted light intensity (Itr ) with 
rising annealing temperature is attributed to the closure of interparticle 
voids within the films, driven by viscous flow of the polymer. A higher 
Itr  directly correlates with enhanced optical clarity in the films. There-
fore, this observed increase in transmitted light intensity unequivocally 
indicates a significant microstructural evolution within the films upon 
annealing, signifying an improvement in their overall optical transparen-
cy. Upon annealing, the polymer undergoes viscous flow, leading to the 
deformation of particles and the subsequent elimination of interparticle 
voids. Further thermal treatment at elevated temperatures promotes pol-
ymer chain healing and interdiffusion across former particle boundaries, 
ultimately yielding a film with enhanced optical transparency. The opti-
cal transmittance of these films is primarily governed by two main light 
scattering phenomena: surface scattering and scattering from internal 
interfaces (i.e., polymer-polymer and polymer-metal oxide boundaries). 
Prior to annealing, the film microstructure is characterized by a high 
density of voids (representing numerous polymer-air interfaces), resulting 
in significant light scattering predominantly from these air-polymer in-
terfaces (surface scattering). Following the completion of the void closure 
process, light scattering is primarily attributable to refractive index mis-
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matches at polymer-polymer and polymer-metal oxide interfaces within 
the consolidated film.

Figure 4: Transmitted light intensity (Itr) of Pure Polystyrene (PS) film according 
to annealing temperature T(0C).

In order to support the above explanations, SEM images of the latex 
film that have not yet undergone the annealing process in Figure 5 and 
those annealed at 2500C in Figure 6 were taken, respectively. It is seen in 
Figures 6 that after annealing at 2500C, the spherical microstructures of 
the latexes are completely destroyed. This situation shows that the poly-
mer chains are viscous flowing into the interparticle voids and the film 
formation is completed through across chain diffusion from the particle 
boundaries and transparency is achieved.

Figure 5: SEM micrographs of the as-prepared nano-sized polystyrene (PS) latex 
film at room temperature. 
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Şekil 6: SEM micrographs of the nano-sized polystyrene (PS) latex film 
following annealing at 250∘C.   

Equation (4.9) was applied to the region above the minimum film for-
mation temperature (T0) in all transmitted light intensity (Itr) curves. The 
activation energy of viscous flow (ΔHtr) was subsequently calculated from 
the slope of the linear fits obtained from the logarithmic transformation of 
these curves. The calculated values are tabulated in Table 1. The behavior 
of Ln(Itr) versus T-1x10-3(-1K) for PS is also seen in Figure 7.

Figure 7: Change in the logarithmic form Ln(Itr) of the curves of Polystyrene 
(PS) film in Figure 5 with T-1. The slope line on the graph is the activation energy 

∆Htr.

Table 1: Calculated viscous flow (∆Htr) activation energy value   for pure PS film.
Polymer ∆Htr (kcal/mol)

PS 4,59
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After this section, we investigated the film formation behaviors of 
polymer/metal oxide nanocomposite films, which we obtained by coating 
pure polymers with two different types of metal oxides (TiO2 and ZnO) 
having different particle sizes (15nm and 40nm) in varying layer numbers 
by the spin coating method, according to temperature, metal oxide layer 
number, metal oxide type and metal oxide size difference.

Optical Behavior of PS (polystyrene) / Metal Oxide (ZnO, TiO2) 
Nanocomposite Films

In this section, we investigated the optical properties and surface 
structures of Polystyrene (PS) films by coating them with TiO2 (15nm and 
40nm) and ZnO (15nm and 40nm) particles with two different particle 
size distributions in increasing layer numbers.

Firstly, we investigated the transmitted light intensity (Itr) by coating 
TiO2 and ZnO metal oxides with 15nm and 40nm particle size distribu-
tion onto PS films with increasing layer numbers by spin coating method. 
The optical transmittance spectra of PS/TiO2 and PS/ZnO nanocomposite 
films consisting of 5, 10, and 15 layers of 15-nm TiO2 and 15-nm ZnO, 
respectively, are presented in Figures 8a and 8b. These films were subject-
ed to thermal annealing at high temperatures for 10 min before spectral 
acquisition.

Figure 8: Plots of Itr versus annealing temperatures for various number of (a)
TiO2 and (b) ZnO layers of PS/TiO2 and PS/ZnO nanocomposite films.  Numbers 

on each curve represent TiO2(15nm) and ZnO(15nm) content in the film.  
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When the (Itr)max value (~80) of the transmitted light intensity of the pure 
PS polymer film is compared, we see that the application of metal oxide to 
the PS films reduces the light transmittance in both series (a and b), and 
especially in the coatings made with TiO2, it reduces the transmitted light 
intensity values   by 90%. This rate is around (65%-70%) in the films coated 
with ZnO. In other words, the transparency of the films coated with ZnO 
particles is slightly better than the films coated with TiO2. When we com-
pare the composite films among themselves, it is seen that the films coated 
with 10 layers of TiO2 and 10 layers of ZnO give higher transmittance than 
the films coated with 5 and 10 layers, i.e. they are more transparent.

Optical transmittance spectra of PS/TiO2 and PS/ZnO nanocomposite 
films containing 5, 10 and 15 layers of TiO2(40nm) and ZnO(40nm) an-
nealed at at elevated temperatures for 10 min are shown in Figures 9a and 
b, respectively.

Figure 9: Plots of Itr as a function of annealing temperature for various number 
of (a)TiO2 and (b) ZnO layers of PS/TiO2 and PS/ZnO nanocomposites.  The 
numerical labels on each curve indicate the TiO2 (40 nm) and ZnO (40 nm) 

content in the films.

In this series prepared with metal oxides having large particle size 
distribution, it is observed that the optical transmittance (Itr) of the films 
coated with ZnO is higher than the TiO2 coated films. In both series, espe-
cially in the 10 and 15 layer coated films, the transmittance increased with 
increasing annealing temperature and after reaching a maximum value at 
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a certain temperature, it either saturated or started to decrease slightly. In 
the films containing TiO2, this maximum was reached at earlier tempera-
tures, but they reached lower transmitted light intensities than the maxi-
mum transmitted light intensities of the films coated with ZnO. In the film 
containing 5 layers of TiO2, the optical transmittance intensity started 
to decrease significantly immediately after reaching the maximum. This 
shows that the film started to become opaque as the annealing continued 
after 1600C. In the film coated with 5 layer ZnO, after the increase started, 
it suddenly collapsed at early temperatures and then started to increase 
again. We can explain this situation as follows; when the voids are filled 
and the particle boundaries are in contact, that is, before the particle-par-
ticle interfaces disappear, most of the incoming light is scattered from 
these interfaces and Itr becomes minimum due to this scattering. Later, 
with the annealing continuing at higher temperatures, the particle-parti-
cle interfaces disappear. This causes the film to become transparent, so 
Itr increases again at high annealing temperatures. We can say that this 
behavior develops in this way in relation to the particle size of ZnO.

Figure 10 illustrates the dependence of the maximum transmitted li-
ght intensity (Itr )max on the number of metal oxide layers. A similar cha-
racteristic response of (Itr )max   is observed in films fabricated with ZnO 
particles of different sizes, demonstrating a comparable behavior to that 
influenced by an increasing number of ZnO layers. We can see that the 
transparency in the films increases with the increase in the number of 
ZnO layers, but the light intensities in films prepared with ZnO with large 
particle size (40nm) are slightly higher than in films containing ZnO with 
15nm particle size.

Similar behavior is observed more clearly and regularly especially in 
films prepared with large-sized (40nm) TiO2. As a result, the fact that (Itr)
max intensities of light transmitted in films containing metal oxides (ZnO 
and TiO2) with large-sized (40nm) particle distribution in composite sys-
tems prepared with two different metal oxide types gives higher values   
indicates that the development in the transparency of composite films is 
significantly affected by the particle size of the metal oxide.

Figure 10: Variation of maximum transmitted light intensities (Itr)max of (a) PS/
TiO2(15nm), (b) PS/ZnO(15nm), (c) PS/TiO2(40nm) and (d) PS/ZnO(40nm) 

composite films with the number of metal oxide layers.
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The increase in Itr originates because of the void closure process, then 
Eq. (4.9) was applied to Itr above T0 below maxima for all film samples in 
two series. Figures 11(a-b) and 12(a-b) present the present LnItr versus T-1 
plots from which ∆Htr activation energies were obtained. The measured 
∆Htr activation energies are listed in Table 2 for both series, where It is 
observed that the activation energies in PS films coated with 15nm particle 
size TiO2 and ZnO do not change much, that is, the amount of heat required 
for one mole of polymeric material to perform a jump during viscous flow 
does not change by changing the mixture composition in the films. 

Figure 11: Figure 8 presents the ln(Itr) as a function of T−1 for (a) PS/
TiO2(15nm) and (b) PS/ZnO(15nm) composite films with 5, 10, and 15 layers of 

metal oxide. The ∆Htr is derived from the slope of the linear fit to these plots.

Figure 12: Figure 9 presents the ln(Itr) as a function of T−1 for (a) PS/
TiO2(40nm) and (b) PS/ZnO(40nm) composite films with 5, 10, and 15 layers of 

metal oxide. The ∆Htr is derived from the slope of the linear fit to these plots. 
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 However, in 40nm particle size TiO2 and ZnO coated films, a completely 
opposite behavior is observed. In TiO2(40nm) coated films, as the number of 

layers increases, the activation energy required for viscous flow also increases, 
but in ZnO(40nm) coated films, the activation energy decreases with the 

increasing number of ZnO layers. A comparative analysis of the ΔHtr  values 
obtained in this study with that of the pure polystyrene (PS) latex system (ΔHtr 
=4.59 kcal⋅mol−1) reveals a significant reduction in the viscous flow activation 

energy upon the incorporation of TiO2 and ZnO. This indicates that the presence 
of these metal oxides promotes the void closure process, consequently enabling 
latex film formation in the composite systems with substantially lower energy 

input compared to the pure latex system.

Table 2: Experimentally determined activation energies of both PS/TiO2 and PS/
ZnO films for different metal oxide particle size and varying numbers of metal 

oxide layers.

Number of 
metal oxide 

layers

∆H for 
TiO2(15nm)/PS 
nanocomposites

(kcal/mol)

∆H for 
TiO2(40nm)/PS 
nanocomposites

(kcal/mol)

∆H for

ZnO (15nm)/PS 
nanocomposites

(kcal/mol)

∆H for

ZnO (40nm)/PS 
nanocomposites

(kcal/mol)
0 4,59 4,59 4,59 4,59
5 1,25 1,99 0,886 3,039
10 2,67 2,033 1,155 2,92
15 - 0,213 2,912 0,993 2,88

In addition, we observed that the activation energies of the composite 
films obtained by coating them 15 times with TiO2 having both 15nm and 
40nm particle sizes were very low. We can explain this as the fact that PS 
latexes were coated very densely with this level of TiO2 content, almost 
completely preventing them from making viscous flow.

In Figure 13 and Figure 14, we examined the changes in the morphol-
ogy of the films by taking SEM micrographs of the PS/TiO2 composite 
films containing 5 and 10 layers of TiO2 (15 nm) after heat treatment at 
1000C and 2500C, respectively, and finally after dissolving in a suitable 
solvent.
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(a)     (b)  

(c)
Figure 13: SEM images of the PS/ TiO2 composite film containing 5 layers of 

TiO2 (15 nm) after annealing at (a) 1000C (b) at 2500C for 10 min and (c) after 
dissolution.

(a)      (b) 

(c) 
Figure 14: SEM images of the PS/ TiO2 composite film containing 10 layers of 
TiO2 (15 nm) after annealing at (a) 1000C (b) at 2500C for 10 min and (c) after 

dissolution.
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When we look at the annealed states of the 5 and 10-layer TiO2 coated 
films in Figures 13(a-b) and 14(a-b) at 1000C and 2500C, it is seen that 
the PS spheres in the film containing  5 layers of TiO2 melted after the 
2500C heat treatment and gave a flat structure, but voids locally formed in 
places . This may be due to phase separation of PS and TiO2 at this stage. 
It is observed that the surface of the film coated with 10 layers of TiO2 
annealed at 1000C has a much flatter structure. We can explain this as the 
accumulation of TiO2 particles on the surface as a result of the very dense 
coating of the PS latex film surface with TiO2 and the formation of a flat 
structure on the upper surface of the film. In addition, although a smooth 
surface structure is obtained by the melting of the PS latex spheres after 
annealing at 2500C on the surface of the film containing 10 layers of TiO2, 
we also see clustered TiO2 particles in some areas due to the density of 
the coating.

Figures 13c and 14c show the surface structures of the films with 5 
and 10 layers of TiO2 (15nm) after the dissolution process, respectively. 
The intended porosity was achieved in both films, but the most regu-
lar and dense porosity was achieved in the film coated with 5 layers of 
TiO2. In the 10-layer TiO2 coated film, we see that the porosity is not as 
honeycomb-like as expected and its number decreases due to the dense 
accumulation of TiO2 particles on the PS spheres. 

(a)       (b) 

(c) 
Figure 15: SEM images of the PS/ TiO2 composite film containing 5 layers of 

TiO2 (40nm) after annealing at (a) 1000C (b) at 2500C for 10 min and (c) after 
dissolution.
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 (a)      (b) 

(c) 
Figure 16: SEM images of the PS/ TiO2 composite film containing 10 layers of 
TiO2 (40nm) after annealing at (a) 1000C (b) at 2500C for 10 min and (c) after 

dissolution

Figures 15 and 16 show the surface morphologies of PS/TiO2 compos-
ite films prepared by coating 5 and 10 layers with large-sized (40 nm) 
TiO2 particles according to their annealing temperatures and post-dis-
solution states. Firstly, when we look at the annealed states at 1000C and 
2500C, we cannot clearly see the spherical forms of PS latexes at 1000C  in 
both 5-layer and 10-layer TiO2 (40nm) containing films. This is because 
large particle size (40nm) TiO2 particles accumulate and form a coating 
on the upper surface of PS latexes. After heat treatment at 2500C, we see 
that the film structures have turned into a flat form due to viscous flow 
and mutual chain diffusion of PS latex chains from intermediate bound-
aries, but TiO2 particles have accumulated in some regions of the film and 
clustered on the surface with this melting.

In addition, when we compare these films with the surfaces of the 
films coated with small-sized TiO2(15 nm) particles in Figures 13a and 
14a, we see that the small-sized TiO2(15 nm) particles penetrate better 
into the gaps between the PS latexes and accumulate more evenly in the 
gaps, resulting in a smoother surface compared to the films coated with 
40 nm TiO2.

Finally, it is observed that porous structures, although not very regu-
lar, were formed in the composite film coated with only 10 layers of TiO2 
after dissolution (Figure 16c).
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(a)       (b) 

(c) 
Figure 17: SEM images of the PS/ZnO composite film containing 5 layers of 
ZnO(15nm) after annealing at (a) 1000C (b) at 2500C for 10 min and (c) after 

dissolution.

(a)       (b) 

(c) 
Figure 18: SEM images of the PS/ZnO composite film containing 5 layers of 
ZnO(40nm) after annealing at (a) 1000C (b) at 2500C for 10 min and (c) after 

dissolution.

When we look at the annealed states of the films in figures 17a and 18a 
at 1000C, the spherical structures of the PS latexes are clearly seen in the 
film coated with 5 layers of ZnO with small-sized (15nm) ZnO particles. 
When we compare the film surfaces annealed at 2500C, we see that poros-
ity has started in the films coated with 5 layers of ZnO (15nm) in Figure 
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17b, but in the film prepared by coating with 5 layers of ZnO (40nm) in 
Figure 18b, the PS spheres that have not yet melted are still seen.

It is understood that ZnO particles have a weak accumulation between 
PS latexes, that is, ZnO particles start from the lower parts of the film 
and cover the PS latexes through accumulation, and that the wall height 
is sufficient for pore formation in these areas of the film after dissolution, 
but in some areas of the film, ZnO particles do not accumulate from the 
lower parts of the film, but accumulate directly on the top surface of the 
film and form a layer there, completely covering the PS spheres, thus pre-
venting pore formation after dissolution.

In conclusion, We observed that porosity was achieved in varying pro-
portions and arrangements in PS/TiO2 and PS/ZnO composite systems 
prepared by coating with almost both metal oxide types and metal oxide 
particle sizes. Thus, we found that the production of regular porosity with 
sufficient wall height can be completely controlled by changing two pa-
rameters (type of metal oxide and particle size of metal oxide). Tunable 
control over the dimensions of internal features such as wall thickness 
and pore size is crucial for certain applications. In the context of photonic 
crystals, this capability facilitates precise manipulation of the periodicity 
of the dielectric constant, thereby enabling the desired optical response. 
The structural changes were found to be consistent with the UUV data for 
each film series. In particular, we found that the particle size of the metal 
oxide had a significant effect on the viscous flow activation energies of the 
composite films. The activation energies of the films prepared with 30 nm 
sized metal oxides were found to be slightly larger than the activation en-
ergies of the composite films prepared with 15 nm sized metal oxides; this 
phenomenon was attributed to the particle size effect of the metal oxide. 

Finally, the transmittance of the ZnO-coated films is 30-60% higher 
than that of the TiO2 series, promising the use of ZnO-coated composite 
films in anti-reflective applications. In this study, we also found that the 
formation of monodisperse, submicron inorganic oxide pores depends on 
the type, size and number of layers of the metal oxide by spin-coating 
technique, which is the simplest and cheapest technique. These structures 
can potentially be used in applications of chromatographically supported 
materials, solid crystals, battery materials, thermal insulators, or photon-
ic crystals.
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Introduction 

The basis for the concept of a golden structure on manifolds are 
polynomial structures defined by Goldberg and Yano (Goldberg & Yano, 
1970) and it was introduced by Hreţcanu and Crâşmăreanu (Hreţcanu & 
Crâşmăreanu, 2007) with inspiration from the golden ratio. Golden 
structures were researched by the same authors (Crâşmăreanu & 
Hreţcanu, 2008) with the help of the properties of corresponding almost 
product structures. Complete and horizontal lifts of golden structures in 
tangent bundles were explored by Özkan (Özkan, 2014). The integrability 
conditions of golden Riemannian structures were discussed by Gezer, 
Cengiz and Salimov (Gezer, Cengiz, & Salimov, 2013). The fundamental 
features of the induced structures on submanifolds in golden Riemannian 
manifolds were given and invariant submanifolds were characterized by 
Hreţcanu and Crâşmăreanu (Hreţcanu & Crâşmăreanu, 2007; Hreţcanu & 
Crâşmăreanu, 2009). Anti-invariant submanifolds of golden Riemannian 
manifolds were examined by Gök, Kılıç and Keleş (Gök, Kılıç, & Keleş, 
2020) in terms of the characterizations and the condition of being totally 
geodesic. Also, the stability problem of a particular class of anti-invariant 
submanifolds, i.e., Lagrangian-like submanifolds in golden Riemannian 
manifolds was investigated by Gök and Kılıç (Gök & Kılıç, 2023). As an 
ordinary generalization of invariant and anti-invariant submanifolds, the 
notion of a semi-invariant submanifold in golden Riemannian manifolds 
was introduced by Erdoğan and Yıldırım (Erdoğan & Yıldırım, 2018), 
who studied the geometry of distributions arose from its definition. 
Furthermore, the induced canonical structures and the associated 
distributions of semi-invariant submanifolds in golden Riemannian 
manifolds were analyzed by Gök, Keleş and Kılıç (Gök, Keleş, & Kılıç, 
2019). 

Motivated by the above investigations, in this paper, three 
classification theorems for totally umbilical semi-invariant submanifolds 
in locally decomposable golden Riemannian manifolds are given. It is 
also shown that there is no totally umbilical proper semi-invariant 
submanifolds in a positively or negatively curved locally decomposable 
golden Riemannian manifold. 
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was introduced by Erdoğan and Yıldırım (Erdoğan & Yıldırım, 2018), 
who studied the geometry of distributions arose from its definition. 
Furthermore, the induced canonical structures and the associated 
distributions of semi-invariant submanifolds in golden Riemannian 
manifolds were analyzed by Gök, Keleş and Kılıç (Gök, Keleş, & Kılıç, 
2019). 

Motivated by the above investigations, in this paper, three 
classification theorems for totally umbilical semi-invariant submanifolds 
in locally decomposable golden Riemannian manifolds are given. It is 
also shown that there is no totally umbilical proper semi-invariant 
submanifolds in a positively or negatively curved locally decomposable 
golden Riemannian manifold. 

Preliminaries 

In this section, we give a short background on golden manifolds 
and their submanifolds. 

A golden structure �̃�𝛷 on a differentiable manifold �̃�𝑀 is a 
polynomial structure of degree 2 yielding the equation 

 �̃�𝛷2 = �̃�𝛷 + 𝐼𝐼, (1) 

where 𝐼𝐼 is the identity transformation on �̃�𝑀. In this case, the pair (�̃�𝑀 , �̃�𝛷) 
is called a golden manifold. The 𝑘𝑘-th power of �̃�𝛷 is given by 

 �̃�𝛷𝑘𝑘 = 𝐹𝐹𝑘𝑘 �̃�𝛷 + 𝐹𝐹𝑘𝑘−1𝐼𝐼, (2) 

where (𝐹𝐹𝑘𝑘) is the Fibonacci sequence generated by the rule 𝐹𝐹𝑘𝑘+1 = 𝐹𝐹𝑘𝑘 +
𝐹𝐹𝑘𝑘−1 with 𝐹𝐹0 = 0 and 𝐹𝐹1 = 1. The eigenvalues of �̃�𝛷 are the roots of the 

Fibonacci equation 𝑥𝑥2 = 𝑥𝑥 + 1, i.e., 𝜙𝜙 = 1+√5
2  and 1 − 𝜙𝜙 = 1−√5

2 . Also, 

denoting by �̃�𝛷−1 the inverse of �̃�𝛷, it is given by 

 �̃�𝛷−1 = �̃�𝛷 − 𝐼𝐼 (3) 

and verifies the equation  

 (�̃�𝛷−1)
2
= − �̃�𝛷−1 + 𝐼𝐼, (4) 

so it is not a golden structure. 

A Riemannian manifold (�̃�𝑀 , �̃�𝑔) endowed with a golden structure 
�̃�𝛷 is called a golden Riemannian manifold if 

 �̃�𝑔 (�̃�𝛷 𝑋𝑋, 𝑌𝑌) = �̃�𝑔 (𝑋𝑋, �̃�𝛷 𝑌𝑌) (5) 

for all 𝑋𝑋,𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇 �̃�𝑀) and it is denoted by the triple (�̃�𝑀 , �̃�𝑔 , �̃�𝛷) (Hreţcanu 
& Crâşmăreanu, 2007; Crâşmăreanu & Hreţcanu, 2008; Hreţcanu & 
Crâşmăreanu, 2009). In particular, a  golden Riemannian manifold 
(�̃�𝑀 , �̃�𝑔 , �̃�𝛷) is said to be a locally decomposable golden Riemannian 
manifold if �̃�𝛻  �̃�𝛷 = 0, where �̃�𝛻  stands for the Levi-Civita connection on 
�̃�𝑀 (Hreţcanu & Crâşmăreanu, 2007). 
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Let (�̃�𝑀 , �̃�𝑔 , �̃�𝛷) be a locally decomposable golden Riemannian 
manifold. In this case, the Riemannian curvature tensor �̃�𝑅 of �̃�𝑀 satisfies 
the following relations (Blaga & Hreţcanu, 2017): 

 �̃�𝑅 (𝑋𝑋, 𝑌𝑌) �̃�𝛷 𝑍𝑍 = �̃�𝛷  �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑍𝑍, (6) 
 �̃�𝑅 (�̃�𝛷 𝑋𝑋, 𝑌𝑌) = �̃�𝑅 (𝑋𝑋, �̃�𝛷 𝑌𝑌), (7) 
 �̃�𝑅 (�̃�𝛷 𝑋𝑋, �̃�𝛷 𝑌𝑌) = �̃�𝑅 (�̃�𝛷 𝑋𝑋, 𝑌𝑌) + �̃�𝑅 (𝑋𝑋, 𝑌𝑌) (8) 

and 

 �̃�𝑅 (�̃�𝛷𝑘𝑘+1 𝑋𝑋, 𝑌𝑌) = 𝐹𝐹𝑘𝑘+1 �̃�𝑅 (�̃�𝛷 𝑋𝑋, 𝑌𝑌) + 𝐹𝐹𝑘𝑘 �̃�𝑅 (𝑋𝑋, 𝑌𝑌) (9) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇 �̃�𝑀). In addition, from (5), (6) and (7), we have 

 �̃�𝐾 (�̃�𝛷 𝑋𝑋, 𝑌𝑌, 𝑍𝑍,𝑊𝑊) = �̃�𝐾 (𝑋𝑋, �̃�𝛷 𝑌𝑌, 𝑍𝑍,𝑊𝑊) (10) 

and 

 �̃�𝐾 (𝑋𝑋, 𝑌𝑌, �̃�𝛷 𝑍𝑍,𝑊𝑊) = �̃�𝐾 (𝑋𝑋, 𝑌𝑌, 𝑍𝑍, �̃�𝛷 𝑊𝑊) (11) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍,𝑊𝑊 ∈ 𝛤𝛤(𝑇𝑇 �̃�𝑀), where �̃�𝐾 denotes the Riemann-Christoffel 
curvature tensor of �̃�𝑀. 

We consider any isometrically immersed submanifold 𝑀𝑀 of a 
golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Also, we denote by the same 
notation �̃�𝑔 the Riemannian metric on 𝑀𝑀. Then the formulas of Gauss and 
Weingarten of 𝑀𝑀 in �̃�𝑀 are given, respectively, by 

 �̃�𝛻𝑋𝑋 𝑌𝑌 = 𝛻𝛻𝑋𝑋𝑌𝑌 + 𝜎𝜎(𝑋𝑋, 𝑌𝑌) (12) 

and 

 �̃�𝛻𝑋𝑋 𝑈𝑈 = −𝐴𝐴𝑈𝑈𝑋𝑋 + 𝛻𝛻𝑋𝑋⊥𝑈𝑈 (13) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀) and 𝑈𝑈 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀⊥), where 𝛻𝛻, 𝜎𝜎, 𝛻𝛻⊥ and 𝐴𝐴𝑈𝑈 are the 
induced connection, the second fundamental form, the Weingarten 
endomorphism associated with 𝑈𝑈 and the normal connection, 
respectively. Moreover, the Codazzi equation of 𝑀𝑀 in �̃�𝑀 is given by 

 (�̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑍𝑍)⊥ = (𝛻𝛻𝑋𝑋𝜎𝜎)(𝑌𝑌, 𝑍𝑍) − (𝛻𝛻𝑌𝑌𝜎𝜎)(𝑋𝑋, 𝑍𝑍) (14) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀). 

On the other hand, if 𝜎𝜎 = 0, then 𝑀𝑀 is said to be a totally 
geodesic submanifold; if 𝐻𝐻 = 0, then 𝑀𝑀 is called a minimal submanifold, 
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manifold. In this case, the Riemannian curvature tensor �̃�𝑅 of �̃�𝑀 satisfies 
the following relations (Blaga & Hreţcanu, 2017): 

 �̃�𝑅 (𝑋𝑋, 𝑌𝑌) �̃�𝛷 𝑍𝑍 = �̃�𝛷  �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑍𝑍, (6) 
 �̃�𝑅 (�̃�𝛷 𝑋𝑋, 𝑌𝑌) = �̃�𝑅 (𝑋𝑋, �̃�𝛷 𝑌𝑌), (7) 
 �̃�𝑅 (�̃�𝛷 𝑋𝑋, �̃�𝛷 𝑌𝑌) = �̃�𝑅 (�̃�𝛷 𝑋𝑋, 𝑌𝑌) + �̃�𝑅 (𝑋𝑋, 𝑌𝑌) (8) 

and 

 �̃�𝑅 (�̃�𝛷𝑘𝑘+1 𝑋𝑋, 𝑌𝑌) = 𝐹𝐹𝑘𝑘+1 �̃�𝑅 (�̃�𝛷 𝑋𝑋, 𝑌𝑌) + 𝐹𝐹𝑘𝑘 �̃�𝑅 (𝑋𝑋, 𝑌𝑌) (9) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇 �̃�𝑀). In addition, from (5), (6) and (7), we have 

 �̃�𝐾 (�̃�𝛷 𝑋𝑋, 𝑌𝑌, 𝑍𝑍,𝑊𝑊) = �̃�𝐾 (𝑋𝑋, �̃�𝛷 𝑌𝑌, 𝑍𝑍,𝑊𝑊) (10) 

and 

 �̃�𝐾 (𝑋𝑋, 𝑌𝑌, �̃�𝛷 𝑍𝑍,𝑊𝑊) = �̃�𝐾 (𝑋𝑋, 𝑌𝑌, 𝑍𝑍, �̃�𝛷 𝑊𝑊) (11) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍,𝑊𝑊 ∈ 𝛤𝛤(𝑇𝑇 �̃�𝑀), where �̃�𝐾 denotes the Riemann-Christoffel 
curvature tensor of �̃�𝑀. 

We consider any isometrically immersed submanifold 𝑀𝑀 of a 
golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Also, we denote by the same 
notation �̃�𝑔 the Riemannian metric on 𝑀𝑀. Then the formulas of Gauss and 
Weingarten of 𝑀𝑀 in �̃�𝑀 are given, respectively, by 

 �̃�𝛻𝑋𝑋 𝑌𝑌 = 𝛻𝛻𝑋𝑋𝑌𝑌 + 𝜎𝜎(𝑋𝑋, 𝑌𝑌) (12) 

and 

 �̃�𝛻𝑋𝑋 𝑈𝑈 = −𝐴𝐴𝑈𝑈𝑋𝑋 + 𝛻𝛻𝑋𝑋⊥𝑈𝑈 (13) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀) and 𝑈𝑈 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀⊥), where 𝛻𝛻, 𝜎𝜎, 𝛻𝛻⊥ and 𝐴𝐴𝑈𝑈 are the 
induced connection, the second fundamental form, the Weingarten 
endomorphism associated with 𝑈𝑈 and the normal connection, 
respectively. Moreover, the Codazzi equation of 𝑀𝑀 in �̃�𝑀 is given by 

 (�̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑍𝑍)⊥ = (𝛻𝛻𝑋𝑋𝜎𝜎)(𝑌𝑌, 𝑍𝑍) − (𝛻𝛻𝑌𝑌𝜎𝜎)(𝑋𝑋, 𝑍𝑍) (14) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀). 

On the other hand, if 𝜎𝜎 = 0, then 𝑀𝑀 is said to be a totally 
geodesic submanifold; if 𝐻𝐻 = 0, then 𝑀𝑀 is called a minimal submanifold, 

where 𝐻𝐻 is the mean curvature vector of 𝑀𝑀; if 𝜎𝜎(𝑋𝑋, 𝑌𝑌) = �̃�𝑔 (𝑋𝑋, 𝑌𝑌)𝐻𝐻 for 
all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀), then 𝑀𝑀 is termed a totally umbilical submanifold 
(Bejancu, 1986). Also, if 𝑀𝑀 is a totally umbilical submanifold such that 
dim𝑀𝑀 ≥ 2 and has the non-zero parallel mean curvature vector 𝐻𝐻, i.e., 
𝛻𝛻𝑋𝑋⊥𝐻𝐻 = 0 for all 𝑋𝑋 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀), then it is named an extrinsic sphere 
(Nomizu & Yano, 1974). 

If 𝑀𝑀 is a totally umbilical submanifold in �̃�𝑀, then the formulas of 
Gauss and Weingarten are expressed as follows: 

 �̃�𝛻𝑋𝑋 𝑌𝑌 = 𝛻𝛻𝑋𝑋𝑌𝑌 + �̃�𝑔 (𝑋𝑋, 𝑌𝑌)𝐻𝐻 (15) 

and 

 �̃�𝛻𝑋𝑋 𝑈𝑈 = − �̃�𝑔 (𝐻𝐻, 𝑈𝑈)𝑋𝑋 + 𝛻𝛻𝑋𝑋⊥𝑈𝑈 (16) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀) and 𝑈𝑈 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀⊥), respectively. Furthermore, the 
Codazzi equation becomes the form 

 �̃�𝑅 (𝑋𝑋, 𝑌𝑌, 𝑍𝑍, 𝑈𝑈) = �̃�𝑔 (𝑌𝑌, 𝑍𝑍) �̃�𝑔 (𝛻𝛻𝑋𝑋⊥𝐻𝐻, 𝑈𝑈) − �̃�𝑔 (𝑋𝑋, 𝑍𝑍) �̃�𝑔 (𝛻𝛻𝑌𝑌⊥𝐻𝐻, 𝑈𝑈) (17) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀) and 𝑈𝑈 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀⊥) (Bejancu, 1986). 

For any 𝑋𝑋 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀), we write 

 �̃�𝛷 𝑋𝑋 = 𝑓𝑓𝑋𝑋 + ℎ𝑋𝑋, (18) 

where 𝑓𝑓𝑋𝑋 and ℎ𝑋𝑋 are the tangential and normal components of �̃�𝛷 𝑋𝑋, 
respectively. Similarly, for any 𝑈𝑈 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀), we put 

 �̃�𝛷 𝑈𝑈 = 𝑡𝑡𝑈𝑈 + 𝑠𝑠𝑈𝑈, (19) 

where 𝑡𝑡𝑈𝑈 and 𝑠𝑠𝑈𝑈 are the tangential and normal components of �̃�𝛷 𝑈𝑈, 
respectively. Also, 𝑓𝑓, ℎ, 𝑡𝑡 and 𝑠𝑠 hold the following relations: 

 �̃�𝑔 (𝑓𝑓𝑋𝑋, 𝑌𝑌) = �̃�𝑔 (𝑋𝑋, 𝑓𝑓𝑌𝑌), (20) 
 �̃�𝑔 (𝑠𝑠𝑈𝑈, 𝑉𝑉) = �̃�𝑔 (𝑈𝑈, 𝑠𝑠𝑉𝑉) (21) 

and 

 �̃�𝑔 (ℎ𝑋𝑋, 𝑈𝑈) = �̃�𝑔 (𝑋𝑋, 𝑡𝑡𝑈𝑈) (22) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀) and 𝑈𝑈, 𝑉𝑉 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀⊥). Considering (1), by means of 
(18) and (19), we have the following relations: 

 𝑓𝑓 + 𝐼𝐼 = 𝑓𝑓2 + 𝑡𝑡ℎ, (23) 
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 ℎ = ℎ𝑓𝑓 + 𝑠𝑠ℎ, (24) 
 𝑡𝑡 = 𝑓𝑓𝑡𝑡 + 𝑡𝑡𝑠𝑠 (25) 

and 

 𝑠𝑠 + 𝐼𝐼 = 𝑠𝑠2 + ℎ𝑡𝑡. (26) 

A Review on Semi-Invariant Submanifolds in Golden Riemannian 
Manifolds 

This section provides a short review on semi-invariant 
submanifolds in golden Riemannian manifolds to clarify the main results 
of the paper. 

Definition 1. (Erdoğan & Yıldırım, 2018) Any isometrically immersed 
submanifold 𝑀𝑀 of a golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷) is said to be 
semi-invariant if there exist two orthogonal complementary distributions 
𝑃𝑃 and 𝑄𝑄 on 𝑀𝑀 satisfying the following relations: 

a) �̃�𝛷 (𝑃𝑃𝑎𝑎) = 𝑃𝑃𝑎𝑎 ⊆ 𝑇𝑇𝑎𝑎𝑀𝑀, i.e., 𝑃𝑃 is a �̃�𝛷-invariant distribution, 

b) �̃�𝛷 (𝑄𝑄𝑎𝑎) ⊆ 𝑇𝑇𝑎𝑎𝑀𝑀⊥, i.e., 𝑄𝑄 is a �̃�𝛷-anti-invariant distribution 

for each point 𝑎𝑎 ∈ 𝑀𝑀. If neither 𝑃𝑃 = {0} nor 𝑄𝑄 = {0}, then 𝑀𝑀 is called a 
proper semi-invariant submanifold. 

Proposition 1. (Gök, Keleş, & Kılıç, 2019) Let 𝑀𝑀 be any semi-invariant 
submanifold of a golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Then we have 
the following relations: 

 𝑓𝑓𝑄𝑄 = {0}, (27) 
 ℎ𝑄𝑄 = �̃�𝛷 𝑄𝑄, (28) 
 ℎ𝑃𝑃 = {0} (29) 

and 

 𝑓𝑓𝑃𝑃 = 𝑃𝑃. (30) 

Proposition 2. (Gök, Keleş, & Kılıç, 2019) A necessary and sufficient 
condition for any isometrically immersed submanifold 𝑀𝑀 of a golden 
Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷) to be semi-invariant that 

 ℎ𝑓𝑓 = 0. (31) 
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for each point 𝑎𝑎 ∈ 𝑀𝑀. If neither 𝑃𝑃 = {0} nor 𝑄𝑄 = {0}, then 𝑀𝑀 is called a 
proper semi-invariant submanifold. 

Proposition 1. (Gök, Keleş, & Kılıç, 2019) Let 𝑀𝑀 be any semi-invariant 
submanifold of a golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Then we have 
the following relations: 

 𝑓𝑓𝑄𝑄 = {0}, (27) 
 ℎ𝑄𝑄 = �̃�𝛷 𝑄𝑄, (28) 
 ℎ𝑃𝑃 = {0} (29) 

and 

 𝑓𝑓𝑃𝑃 = 𝑃𝑃. (30) 

Proposition 2. (Gök, Keleş, & Kılıç, 2019) A necessary and sufficient 
condition for any isometrically immersed submanifold 𝑀𝑀 of a golden 
Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷) to be semi-invariant that 

 ℎ𝑓𝑓 = 0. (31) 

Remark 1. (Gök, Keleş, & Kılıç, 2019) Let us define a tensor field Ψ̃ of 
type (1,1) on a golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷) by 

 Ψ̃ = − �̃�𝛷−1. (32) 

In this situation, it follows that Ψ̃ is a golden structure and �̃�𝑔 is Ψ̃-
compatible, i.e., 

 �̃�𝑔 (Ψ̃ 𝑋𝑋, 𝑌𝑌) = �̃�𝑔 (𝑋𝑋, Ψ̃ 𝑌𝑌) (33) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇 �̃�𝑀). Hence, (�̃�𝑀 , �̃�𝑔 , Ψ̃) is also a golden Riemannian 
manifold. 

Remark 2. (Gök, Keleş, & Kılıç, 2019) Let 𝑀𝑀 be any proper semi-
invariant submanifold of a golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). We 
put 𝒬𝒬 = �̃�𝛷 𝑄𝑄 and denote by 𝒫𝒫 its orthogonal complement in the normal 
bundle 𝑇𝑇𝑀𝑀⊥. Then we have 𝑇𝑇𝑀𝑀⊥ = 𝒫𝒫 ⊕ 𝒬𝒬. 

Proposition 3. (Gök, Keleş, & Kılıç, 2019) Let 𝑀𝑀 be any semi-invariant 
submanifold of a golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Then there is a 
pair of orthogonal complementary distributions (𝒫𝒫, 𝒬𝒬) on the normal 
bundle 𝑇𝑇𝑀𝑀⊥ such that 𝒫𝒫 is a Ψ̃-invariant distribution and 𝒬𝒬 is a Ψ̃-anti-
invariant distribution. 

Proposition 4. (Gök, Keleş, & Kılıç, 2019) Let 𝑀𝑀 be any semi-invariant 
submanifold of a golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Then we have 
the following relations: 

 𝑡𝑡𝒫𝒫 = {0}, (34) 
 𝑠𝑠𝒫𝒫 = (𝐼𝐼 − 𝑠𝑠)𝒫𝒫 = 𝒫𝒫 or �̃�𝛷 𝒫𝒫 = 𝒫𝒫, (35) 
 (𝐼𝐼 − 𝑠𝑠)𝒬𝒬 = {0} (36) 

and 

 𝑡𝑡𝒬𝒬 = 𝑄𝑄 or �̃�𝛹 𝒬𝒬 = 𝑄𝑄. (37) 

Proposition 5. (Erdoğan & Yıldırım, 2018) Let 𝑀𝑀 be any totally 
umbilical proper semi-invariant submanifold of a locally decomposable 
golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Then both of the invariant 
distribution 𝑃𝑃 and the anti-invariant distribution 𝑄𝑄 are integrable. 

Main Results 
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This section is devoted to a study of totally umbilical semi-
invariant submanifolds of a locally decomposable golden Riemannian 
manifold containing three classification theorems and one absence 
theorem. 

Theorem 1. Let 𝑀𝑀 be any totally umbilical proper semi-invariant 
submanifold of a locally decomposable golden Riemannian manifold 
(�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Then we have 

 𝐻𝐻 ∈ 𝛤𝛤(𝒫𝒫). (38) 

Proof. From the assumption that 𝑀𝑀 is a totally umbilical semi-invariant 
submanifold, Proposition 5 implies that 𝑄𝑄 is integrable, that is, 𝐴𝐴�̃�𝛷𝑋𝑋𝑌𝑌 = 0 
for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑄𝑄), so we get 

 �̃�𝑔 (𝐻𝐻, �̃�𝛷 𝑋𝑋)𝑌𝑌 = 0 (39) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑄𝑄). Hence, it follows that 

 �̃�𝑔 (𝐻𝐻, �̃�𝛷 𝑋𝑋) = 0, (40) 

which is the desired equality. 

Proposition 6. Let 𝑀𝑀 be any totally umbilical proper semi-invariant 
submanifold of a locally decomposable golden Riemannian manifold 
(�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Then the covariant derivative of the endomorphism 𝑓𝑓 
vanishes identically, i.e., �̃�𝛻 𝑓𝑓 = 0. 

Proof. We recall from (Hreţcanu & Blaga, 2018) that the covariant 
derivative of 𝑓𝑓 is defined by 

 (�̃�𝛻𝑋𝑋 𝑓𝑓)𝑌𝑌 = 𝐴𝐴ℎ𝑌𝑌𝑋𝑋 + 𝑡𝑡𝑡𝑡(𝑋𝑋, 𝑌𝑌) (41) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀). Because 𝑀𝑀 is a totally umbilical semi-invariant 
submanifold, (41) turns into the form 

 (�̃�𝛻𝑋𝑋 𝑓𝑓)𝑌𝑌 = �̃�𝑔 (𝐻𝐻, ℎ𝑌𝑌)𝑋𝑋 + �̃�𝑔 (𝑋𝑋, 𝑌𝑌)𝑡𝑡𝐻𝐻 (42) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀). If 𝐻𝐻 = 0, then the proof is obvious. Now, we 
assume that 𝐻𝐻 ≠ 0. In this case, by means of (28), (29), (34) and (38), it 
is derived from (42) that �̃�𝛻 𝑓𝑓 = 0. 
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(�̃�𝑀 , �̃�𝑔 , �̃�𝛷). Then the covariant derivative of the endomorphism 𝑓𝑓 
vanishes identically, i.e., �̃�𝛻 𝑓𝑓 = 0. 

Proof. We recall from (Hreţcanu & Blaga, 2018) that the covariant 
derivative of 𝑓𝑓 is defined by 

 (�̃�𝛻𝑋𝑋 𝑓𝑓)𝑌𝑌 = 𝐴𝐴ℎ𝑌𝑌𝑋𝑋 + 𝑡𝑡𝑡𝑡(𝑋𝑋, 𝑌𝑌) (41) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀). Because 𝑀𝑀 is a totally umbilical semi-invariant 
submanifold, (41) turns into the form 

 (�̃�𝛻𝑋𝑋 𝑓𝑓)𝑌𝑌 = �̃�𝑔 (𝐻𝐻, ℎ𝑌𝑌)𝑋𝑋 + �̃�𝑔 (𝑋𝑋, 𝑌𝑌)𝑡𝑡𝐻𝐻 (42) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀). If 𝐻𝐻 = 0, then the proof is obvious. Now, we 
assume that 𝐻𝐻 ≠ 0. In this case, by means of (28), (29), (34) and (38), it 
is derived from (42) that �̃�𝛻 𝑓𝑓 = 0. 

Theorem 2. Let 𝑀𝑀 be any totally umbilical semi-invariant submanifold 
of a locally decomposable golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). If 
dim �̃�𝑀 = dim𝑀𝑀 + dim𝑄𝑄, then 𝑀𝑀 is totally geodesic. 

Proof. If dim𝑄𝑄 = 0, then the proof is trivial. Now, we suppose that 
dim𝑄𝑄 ≠ 0. In this case, from the assumption that dim �̃�𝑀 = dim𝑀𝑀 +
dim𝑄𝑄, we have 

 dim𝑄𝑄 = dim𝑇𝑇𝑀𝑀⊥. (43) 

Hence, since �̃�𝛷 is injective and 𝑄𝑄 is anti-invariant, we get 

 �̃�𝛷 𝑄𝑄 = 𝑇𝑇𝑀𝑀⊥. (44) 

In addition, we recall that 𝒬𝒬 is a subbundle of 𝑇𝑇𝑀𝑀⊥, so (44) means that 
𝒬𝒬 = {0}. Thus, we conclude from Theorem 1 that 

 𝐻𝐻 = 0, (45) 

which ends the proof. 

Theorem 3. Let 𝑀𝑀 be any totally umbilical proper semi-invariant 
submanifold with the non-zero mean curvature vector 𝐻𝐻 of a locally 
decomposable golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). If dim𝑃𝑃 ≥ 2, 
then 𝑀𝑀 is an extrinsic sphere. 

Proof. Because of the fact that dim𝑃𝑃 ≥ 2, we have two non-zero vector 
fields 𝑋𝑋, 𝑌𝑌 ∈ 𝛤𝛤(𝑃𝑃) satisfying 

 �̃�𝑔 (𝑋𝑋, 𝑌𝑌) = 0. (46) 

Putting 𝑍𝑍 = 𝑓𝑓𝑌𝑌 in (6), we get 

 �̃�𝑅 (𝑋𝑋, 𝑌𝑌) �̃�𝛷 𝑓𝑓𝑌𝑌 = �̃�𝛷  �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑓𝑓𝑌𝑌. (47) 

By means of (18), from Proposition 2, (47) is written as follows: 

 �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑓𝑓2𝑌𝑌 = �̃�𝛷  �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑓𝑓𝑌𝑌. (48) 

On the other hand, from Proposition 6, we deduce 

 �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑓𝑓𝑍𝑍 = 𝑓𝑓 �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑍𝑍. (49) 

In fact, (49) holds for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀). Hence, considering (23), (27), 
(28) and (49), we obtain from (48) that 

 𝑓𝑓 �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑌𝑌 + �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑌𝑌 = �̃�𝛷 𝑓𝑓 �̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑌𝑌. (50) 
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Taking account of the fact that 𝑃𝑃 is invariant, using (30) in (50), we get 

 �̃�𝑔 (�̃�𝑅 (𝑋𝑋, 𝑌𝑌)𝑌𝑌, 𝑈𝑈) = 0 (51) 

for all 𝑈𝑈 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀⊥). Moreover, by virtue of (17) and (46), (51) turns into 

 �̃�𝑔 (𝑌𝑌, 𝑌𝑌) �̃�𝑔 (𝛻𝛻𝑋𝑋⊥𝐻𝐻, 𝑈𝑈) = 0, (52) 

which means that 𝛻𝛻𝑋𝑋⊥𝐻𝐻 = 0 for all 𝑋𝑋 ∈ 𝛤𝛤(𝑃𝑃). In a similar manner, it can 
be proven that 𝛻𝛻𝑋𝑋⊥𝐻𝐻 = 0 for all 𝑋𝑋 ∈ 𝛤𝛤(𝑄𝑄). Therefore, 𝛻𝛻𝑋𝑋⊥𝐻𝐻 = 0 for all 
𝑋𝑋 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀), that is, 𝑀𝑀 is an extrinsic sphere. 

Theorem 4. There is no totally umbilical proper semi-invariant 
submanifolds in a positively or negatively curved locally decomposable 
golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). 

Proof. We suppose that 𝑀𝑀 is a totally umbilical proper semi-invariant 
submanifold of a positively or negatively curved locally decomposable 
golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). If 𝐻𝐻 = 0, then the proof is 
trivial. Now, we evaluate the case 0 ≠ 𝐻𝐻 ∈ 𝛤𝛤(𝒫𝒫). Let us take two vector 
fields 𝑋𝑋 and 𝑈𝑈 such that 𝑋𝑋 ∈ 𝛤𝛤(𝑃𝑃) and 𝑈𝑈 ∈ 𝛤𝛤(�̃�𝛷 𝑄𝑄). Then we get 

 �̃�𝑔 (𝑈𝑈, 𝐻𝐻) = 0. (53) 

Differentiating (53) with respect to 𝛻𝛻⊥, we obtain 

 �̃�𝑔 (𝛻𝛻𝑋𝑋⊥𝑈𝑈,𝐻𝐻) = − �̃�𝑔 (𝑈𝑈, 𝛻𝛻𝑋𝑋⊥𝐻𝐻). (54) 

On the other hand, as is seen that the parallelism of �̃�𝛷 with respect to �̃�𝛻 is 

equivalent to that of Ψ̃ given by Ψ̃ = − �̃�𝛷−1 in (32). Thus, we have 

 �̃�𝛻𝑋𝑋 Ψ̃ 𝑈𝑈 = Ψ̃ �̃�𝛻𝑋𝑋 𝑈𝑈. (55) 

From (15) and (16), we have 

 𝛻𝛻𝑋𝑋 Ψ̃𝑈𝑈 + �̃�𝑔 (𝑋𝑋, Ψ̃ 𝑈𝑈)𝐻𝐻 = − �̃�𝑔 (𝑈𝑈,𝐻𝐻) Ψ̃ 𝑋𝑋 + Ψ̃ 𝛻𝛻𝑋𝑋⊥𝑈𝑈. (56) 

Using (53) in (56), we obtain 

 𝛻𝛻𝑋𝑋 Ψ̃𝑈𝑈 = Ψ̃𝛻𝛻𝑋𝑋⊥𝑈𝑈. (57) 

As 𝒬𝒬 is Ψ̃-anti-invariant, we get 

 𝛻𝛻𝑋𝑋⊥𝑈𝑈 ∈ 𝛤𝛤(𝒬𝒬). (58) 

Hence, we deduce from (54) and (58) that 
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Taking account of the fact that 𝑃𝑃 is invariant, using (30) in (50), we get 
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for all 𝑈𝑈 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀⊥). Moreover, by virtue of (17) and (46), (51) turns into 
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be proven that 𝛻𝛻𝑋𝑋⊥𝐻𝐻 = 0 for all 𝑋𝑋 ∈ 𝛤𝛤(𝑄𝑄). Therefore, 𝛻𝛻𝑋𝑋⊥𝐻𝐻 = 0 for all 
𝑋𝑋 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀), that is, 𝑀𝑀 is an extrinsic sphere. 

Theorem 4. There is no totally umbilical proper semi-invariant 
submanifolds in a positively or negatively curved locally decomposable 
golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). 

Proof. We suppose that 𝑀𝑀 is a totally umbilical proper semi-invariant 
submanifold of a positively or negatively curved locally decomposable 
golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). If 𝐻𝐻 = 0, then the proof is 
trivial. Now, we evaluate the case 0 ≠ 𝐻𝐻 ∈ 𝛤𝛤(𝒫𝒫). Let us take two vector 
fields 𝑋𝑋 and 𝑈𝑈 such that 𝑋𝑋 ∈ 𝛤𝛤(𝑃𝑃) and 𝑈𝑈 ∈ 𝛤𝛤(�̃�𝛷 𝑄𝑄). Then we get 

 �̃�𝑔 (𝑈𝑈, 𝐻𝐻) = 0. (53) 

Differentiating (53) with respect to 𝛻𝛻⊥, we obtain 

 �̃�𝑔 (𝛻𝛻𝑋𝑋⊥𝑈𝑈,𝐻𝐻) = − �̃�𝑔 (𝑈𝑈, 𝛻𝛻𝑋𝑋⊥𝐻𝐻). (54) 

On the other hand, as is seen that the parallelism of �̃�𝛷 with respect to �̃�𝛻 is 

equivalent to that of Ψ̃ given by Ψ̃ = − �̃�𝛷−1 in (32). Thus, we have 

 �̃�𝛻𝑋𝑋 Ψ̃ 𝑈𝑈 = Ψ̃ �̃�𝛻𝑋𝑋 𝑈𝑈. (55) 

From (15) and (16), we have 

 𝛻𝛻𝑋𝑋 Ψ̃𝑈𝑈 + �̃�𝑔 (𝑋𝑋, Ψ̃ 𝑈𝑈)𝐻𝐻 = − �̃�𝑔 (𝑈𝑈,𝐻𝐻) Ψ̃ 𝑋𝑋 + Ψ̃ 𝛻𝛻𝑋𝑋⊥𝑈𝑈. (56) 

Using (53) in (56), we obtain 

 𝛻𝛻𝑋𝑋 Ψ̃𝑈𝑈 = Ψ̃𝛻𝛻𝑋𝑋⊥𝑈𝑈. (57) 

As 𝒬𝒬 is Ψ̃-anti-invariant, we get 

 𝛻𝛻𝑋𝑋⊥𝑈𝑈 ∈ 𝛤𝛤(𝒬𝒬). (58) 

Hence, we deduce from (54) and (58) that 

 𝛻𝛻𝑋𝑋⊥𝐻𝐻 ∈ 𝛤𝛤(𝒬𝒬). (59) 

Besides, 𝑈𝑈 has the form 

 𝑈𝑈 = �̃�𝛷 𝑌𝑌, (60) 

where 𝑌𝑌 ∈ 𝛤𝛤(𝑄𝑄). Meantime, by an analogous way used in the proof of 
Theorem 3, we derive 

 �̃�𝑔 (𝛻𝛻𝑌𝑌⊥𝐻𝐻, �̃�𝛷 𝑌𝑌) = 0. (61) 

On the other hand, it follows from (11) and (32) that 

 �̃�𝐾 (𝑋𝑋, 𝑌𝑌, 𝑋𝑋, 𝑌𝑌) = − �̃�𝐾 (𝑋𝑋, 𝑌𝑌, Ψ̃ 𝑋𝑋, �̃�𝛷 𝑌𝑌). (62) 

Taking notice of (61), by means of (17), (59) and (60), we derive 

 
�̃�𝐾 (𝑋𝑋 ∧ 𝑌𝑌) = �̃�𝑔 (𝑌𝑌, Ψ̃ 𝑋𝑋) �̃�𝑔 (𝛻𝛻𝑋𝑋⊥𝐻𝐻, �̃�𝛷 𝑌𝑌)

− �̃�𝑔 (𝑋𝑋, Ψ̃ 𝑋𝑋) �̃�𝑔 (𝛻𝛻𝑌𝑌⊥𝐻𝐻, �̃�𝛷 𝑌𝑌), 
(63) 

where �̃�𝐾 is the sectional curvature of the plane section spanned by 𝑋𝑋 and 
𝑌𝑌 of �̃�𝑀. Hence, applying (59) and (61) to (63), we obtain 

 �̃�𝐾 (𝑋𝑋 ∧ 𝑌𝑌) = 0, (64) 

which is a contradiction. Ultimately, the proof has been shown. 

Corollary 1. There is no totally geodesic proper semi-invariant 
submanifolds in a positively or negatively curved locally decomposable 
golden Riemannian manifold (�̃�𝑀 , �̃�𝑔 , �̃�𝛷). 

Proof. As a consequence of Theorem 4, the proof follows from the fact 
that any totally geodesic submanifold is totally umbilical.  
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1. INTRODUCTION

The growing global demand for sustainable energy has caused an ur-
gent shift towards clean and renewable energy solutions. Due to its abun-
dance and low cost, solar power has become a highly sought-after energy 
source. Nonetheless, the variability of solar radiation poses considerable 
difficulties in maintaining a consistent and stable power supply. There-
fore, combining efficient solar energy conversion with compact, high-per-
formance energy storage (ES) systems is essential for developing the next 
generation of self-sustaining devices. 

Photo-supercapacitors (PSCs) have gained attention as an innovative 
solution to this problem. These devices combine solar cells with super-
capacitors, enabling them to generate and store energy simultaneously. 
Unlike traditional setups that require separate components, PSCs simpli-
fy the system by integrating everything into a single unit. This not only 
makes the devices smaller and cheaper but also helps reduce energy loss 
during transfer. Solar technologies, such as perovskite, dye-sensitized, 
organic, and quantum dot derivate cells, are particularly suitable for these 
systems due to their flexibility, ease of production, and good performance 
under various lighting conditions (Ng et al., 2018; Harankahawa et al., 
2017; Zheng et al., 2022). 

The performance of a PSC device is affected from several factors, in-
cluding the efficacy of the power conversion of the photovoltaic (PV) unit, 
the charge storage capability of the supercapacitor (SC) unit, and the in-
terfacial interactions between these components. Studies have shown that 
photoactive materials, new electrode designs, and interface engineering 
have increased the efficiency of energy conversion and storage (Ng et al., 
2015; Namsheer &Rout, 2021; Jacob et al., 2024). 

This review aims to provide an overview of recent developments in 
PSC technology, with a focus on photoactive electrodes and electrolytes, 
as well as future research directions for real-world applications.

2. FUNDAMENTALS OF PHOTO-SUPERCAPACITORS

PSCs represent an innovative combination of two technologies that 
integrate the principles of energy storage and harvesting through the use 
of a shared electrode, facilitated by either an intermediate layer or a con-
necting wire. These devices harvest energy from solar cells, which is sub-
sequently stored as electrochemical energy by supercapacitors. Notably, 
third-generation solar cells are preferred for PSC applications due to their 
simpler architecture compared to first and second generations. This com-
patibility allows for the combination of supercapacitors with various solar 
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cell types, including quantum dot (QD)-sensitized, organic, perovskite, 
dye-sensitized solar cells (DSSC) (Jacob et al., 2024).

In 2004, Miyasaka et al. introduced the groundbreaking concept of 
the first PSC, focusing on a photo-charging capacitor that associates a 
DSSC. A PSC comprises two principal components: the DSSC and a su-
percapacitor. The DSSC is characterized by a photoanode that is coated 
with a light-absorbing semiconductor material, typically titanium dioxide 
(TiO2), affixed to a transparent glass substrate. The device also incor-
porates a liquid electrolyte, a counter electrode fabricated from materi-
als such as porous activated carbon or platinum, and a dye serving as a 
sensitizer. In contrast to conventional supercapacitors, which derive their 
charge from an external electrical energy source, PSCs utilize solar en-
ergy for their charging mechanisms. Upon exposure to solar irradiation, 
the incident light excites electrons within the dye molecules, facilitating 
their promotion into the semiconductor material’s conduction band (CB). 
Simultaneously, electron holes generated in the dye molecule migrate to-
wards the counter electrode. The redox ions present in the electrolyte are 
fundamental in sustaining the equilibrium of the photo-induced electron 
flow; electrons residing in the electrolyte contribute to the regeneration of 
the dye, whereas electrons from the counter electrode occupy the vacant 
sites within the electrolyte. This complex interaction highlights the dis-
tinct operational dynamics of PSCs, setting them apart from conventional 
energy storage systems. (Vadivel et al., 2019).

The reaction mechanism of DSSC-based PSC is explained below 
(Namsheer et al., 2021).

                        (1)

 (2)

                                   (3)

          (4)

   (5)

          (6)

      (7)

PSCs can be categorized based on their electrode configuration into 
two distinct types: two-electrode and three-electrode systems. Fig. 1 il-
lustrates the main components of PSC. In a two-electrode configuration, 
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one electrode functions as the photoelectrode, responsible for sunlight 
absorption, while the second electrode serves as the counter electrode, 
which stores charge. These electrodes create a heterojunction with activat-
ed carbon to enhance electrochemical properties. However, two-electrode 
systems frequently encounter challenges such as high internal resistance 
and discharging inefficiencies. To approach these issues, a three-electrode 
system has been introduced, incorporating a bifunctional electrode locat-
ed between the photoelectrode and the charge storage parts. During the 
charging process, the photoelectrode connects to the counter electrode 
(CE), while the intermediate electrode remains disconnected. Conversely, 
during discharging, the CE interfaces with the intermediate electrode, 
and the photoelectrode remains isolated (Jacob et al., 2024).

 
Fig. 1 Schematic illustration of the photocharging/discharging mechanisms in 
a PSC (Reproduced under the Creative Commons Attribution 4.0 International 

(CC BY 4.0) License) (Flores-Diaz et al., 2023).

3. ADVANCED MATERIALS FOR PHOTO-SUPERCAPACI-
TORS

PSC is an integrated energy system that combines a PV unit for light 
energy conversion combined a supercapacitor (SC) unit for electrochem-
ical energy storage. In this architecture, the PV component absorbs solar 
or artificial light and converts it into electrical energy, which is subse-
quently transferred to the SC unit, where it is stored at the electrode/
electrolyte interface layer. The structural configuration of the PV unit 
is largely dependent on the photovoltaic technology employed. Although 
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first generation and second generation solar cells can be adapted for pho-
to-supercapacitor integration, their limited architectural flexibility and 
fabrication constraints render them less suitable for advanced device de-
sign. In contrast, third-generation photovoltaic technologies—including 
perovskite solar cells, DSSCs, QDSCs, and OPVs—offer greater adapt-
ability due to their facile fabrication methods, compatibility with diverse 
substrates and configurations, and cost-effectiveness. These emerging 
systems commonly incorporate photoactive materials such as metal chal-
chogenides, metal oxides, perovskites, and polymer-based electrodes or 
electrolytes, which enhance their overall efficiency and integration poten-
tial (Flores-Diaz et al., 2023).

3.1. Photoactive Electrodes

A photoanode with a nanocrystalline film serves as the primary elec-
tron donor and is essential for achieving high power conversion efficiency. 
The mesoporous nanocrystalline film’s large surface area facilitates the 
dye loading process, enabling electron flow to the counter electrode (Ng 
et al., 2015). To enhance the performance of photoactive electrodes in 
PSCs,  research has focused on investigating various functional materials.  
In particular, the incorporation of advanced nanostructured substances, 
such as metal oxides, metal chalcogenides, perovskites, metal-organic 
frameworks (MOFs), and conductive polymers, has garnered attention. 
These materials offer unique electronic, optical, and structural charac-
teristics that can improve light absorption, charge separation, and overall 
energy storage performance. The following sections provide an in-depth 
exploration of these material categories and their specific roles in devel-
oping efficient, high-performance photoelectrodes for PSC system tech-
nologies.

3.1.1. Inorganic Semiconductor Materials

● Metal Oxides

A diverse range of transition metal oxides (MOs), such as molybde-
num oxide (MoO₃), titanium dioxide (TiO₂), vanadium oxides (VOₓ), and 
tungsten oxide (WO₃), have been extensively investigated as promising 
candidates for application in photo-supercapacitor systems. These mate-
rials possess tunable band gaps and demonstrate strong photoresponsivity 
from the visible region to the near-infrared regions of the electromagnet-
ic spectrum, enabling efficient solar energy harvesting. Their intrinsic 
semiconducting properties, coupled with high chemical stability and fa-
vorable electronic structures, make them particularly advantageous for 
integrating light absorption and charge storage functionalities within a 
single device architecture.



158  . Melisa ÖĞRETİCİ, Kibar ARAS, Sinem ORTABOY SEZER

Skunik-Nuckowska et al. (2013) reported that devices have led to the 
development of a novel photoelectrochemical capacitor that seamlessly 
combines energy harvesting and storage. Combination of a photo effec-
tive rechargeable RuO2-based (RuOx) capacitor and a DSSC, utilizing a 
D35 dye-modified titanium oxide photoanode and a poly-(3-hexylthio-
phene-2,5-diyl) (P3HT) hole conductor. The incorporation of a bipolar 
silver electrode effectively separates the storage and photovoltaic com-
ponents. Under full sun illumination (100 mW cm⁻²), the integrated PSC 
demonstrated an energy density of 0.17 mWh cm⁻² and a specific capac-
itance of 407 F g⁻¹. The device demonstrated a coulombic conversion ef-
ficiency of 88% and an energy conversion efficiency of 0.8%. Its ability 
to produce a photovoltage of 0.9 V while performing effectively even in 
low-light conditions (10 et al., 2013). mW cm⁻²) highlights its potential for 
various energy harvesting applications (Skunik-Nuckowska

Bagheri et al. (2014) have introduced a novel photorechargeable de-
vice combining a liquid-type DSSC with a Co(II)/Co(III) polypyridyl as 
electrolyte and an Ni(Co)Ox/activated carbon supercapacitor paired with 
(E)-3-(6-(4-(bis(2′,4′-dibutoxy-[1,1′-biphenyl]-4-yl)amino)phenyl)-4,4-di-
hexyl-4H cyclopental [1,2-b:5,4-b’]dithiophen-2-yl)-2-cyanoacrylic acid  
(LEG4) dye. This unique architecture, featuring an intermediate Ni foil 
electrode covered with poly(3,4-ethylenedioxythiophene) (PEDOT), en-
ables coexistent energy generation and storage. The DSSC component 
generated an open-circuit potential (OCP) of 0.8 V and achieved an ener-
gy conversion efficiency of 4.6–4.9%. After integration, the specific ca-
pacitance of the photocapacitor reached 32 F g⁻¹, slightly reduced from 46 
F g⁻¹ of the standalone supercapacitor, likely due to parasitic resistance. 
Despite this, the integrated system demonstrated a commendable energy 
density of 2.3 Wh kg⁻¹ and an overall efficiency of 0.6%, marking it as one 
of the most efficient photo-rechargeable systems reported to date (Bagh-
eri et al., 2014).  

A study by Safshekan et al. (2017) introduced a novel photo-capacitive 
device based on the bismuth vanadate-lead oxide (BiVO₄–PbOx) hetero-
structure, where BiVO₄ serves as a photoactive core and PbOx nanoparti-
cles, derived from lead sulfide (PbS) quantum dots, act as a redox pseudo-
capacitive platform. The device achieves a areal capacitance of 6 mF cm⁻² 
and a high OCP of 1.5 V vs. RHE. Additionally, it exhibits stable charge–
discharge cycling over 100 cycles, offering a promising approach to inte-
grating solar energy conversion and storage (Safshekan et al., 2017).  

The latest developments in metal oxides for photo supercapacitors 
have advanced to enhance energy storage and harvesting. When em-
ployed as photoelectrodes, metal oxides facilitate the conversion of solar 
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energy into electrical energy while simultaneously enabling its storage in 
the form of capacitive charge. This multifunctional capability positions 
metal oxide-based PSCs as promising candidates for next-generation ap-
plications in flexible electronics, self-powered systems, and sustainable 
energy technologies.

In another study, Altaf et al. (2023) developed zinc oxide (ZnO)-based 
PSCs using hydrothermally synthesized nanowire (NW) and nanoflower 
(NF) morphologies, employing a simple drop-casting technique on glass 
and plastic substrates. The NW-based PSCs demonstrated superior photo-
response and energy density under UV illumination, achieving 78.1 mWh 
kg⁻¹ at 1.1 mA g⁻¹, which is attributed to fewer core defects compared to 
NF powders. Under UV light, the Coulombic efficiency (CE %) increased 
significantly, with NW-based PSCs reaching 102%, three times higher 
than in the dark. In comparison, NF-based PSCs achieved 64%, indicat-
ing the critical role of defect structures in photo-induced charge separa-
tion. Additionally, both devices demonstrated remarkable stability, with 
a capacitance retention exceeding 99% after 3000 cycles, underscoring 
the potential of defect-optimized ZnO nanomaterials for next-generation 
flexible and rigid PSC applications (Altaf et al., 2023). 

A novel symmetrical supercapacitor was developed by Chauhan et al. 
(2023) using a stacked V₂O₅/ZnO structure on fluorine-doped tin oxide 
(FTO) coated glass, leveraging the distinct band gaps and work functions 
of metal oxides to enhance photogenerated charge separation. Under UV 
illumination, the device exhibited a remarkable ~178% rise in specific ca-
pacitance, confirmed via galvanostatic charge–discharge (GCD) measure-
ments, and maintained outstanding cyclic stability over 5000 cycles. The 
innovative layered structure not only facilitated efficient light-to-electro-
chemical energy conversion but also provided long-term stability, mark-
ing a promising step toward the development of self-chargeable energy 
storage systems for modern applications (Chauhan et al., 2023).  

Momeni et al. (2024) developed photo-assisted asymmetric super-
capacitors with cobalt manganese sulfide (CoMnS) on TiO₂ nanotubes 
(TNTs), demonstrating efficient simultaneous light harvesting and charge 
storage. Integrating CoMnS as an electrochemically active material onto 
photoactive TNTs greatly improved charge storage capabilities when ex-
posed to light, resulting in an impressive capacitance of 71.7 mF cm⁻², 
compared to 42.2 mF cm⁻² in darkness, showing a ~70% increase in ca-
pacity. The device showed remarkable cyclic stability, maintaining over 
96% of its capacity after 5000 consequtive cycles under the light exposure 
(Momeni et al., 2024). 
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One significant advancement is described by Momeni et al. (2025), 
who presented lightweight flexible PSCs by photoelectrochemical depo-
sition of tellurium (Te) on Ppy (polypyrrole) and V₂O₅ films. A notable 
study reported the fabrication of a flexible solid-state photo-supercapaci-
tor (FSSPC) using Te@PPy–V₂O₅/ITO electrodes, achieving remarkable 
areal-specific capacitances of 131 and 45 mF cm⁻² at current densities 
of 1.0 and 3.0 mA cm⁻², respectively. The device also exhibited excep-
tional stability, with a capacitance retention of 93% over 12000 cycles, 
and showed a significant enhancement under visible light illumination, 
achieving a 65% increase at 3.0 mA cm⁻². These findings underscore the 
potential of Te@PPy–V₂O₅-based FSSPCs in flexible, photo-chargeable 
energy storage applications, especially given their superior bending en-
durance and temperature resilience (Momeni et al., 2025). 

Liang et al. (2025) integrated liquid metal (LM) into transition met-
al oxides (TMOs) to form robust LM-TMO interfacial structures. These 
unique combination significantly enhance the electronic conductivity and 
bandgap modulation, resulting in high energy storage density and supe-
rior light absorption. Photo-assisted asymmetric micro-supercapacitors 
(PAMSCs) based on LM-MoO₃//LM-MnO₂ achieve a specific capacitance 
of 304.2 mF cm⁻² and an energy density of 107.3 μWh cm⁻² at 1.2 mA 
cm⁻² under simulated solar illumination. The device also features recy-
clability by recovering valuable LMs from discarded PAMSCs, address-
ing both performance and environmental challenges (Liang et al., 2025). 

To sum up, advancements in metal oxides for PSCs are characterized 
by innovative structural designs, effective doping methods, and the in-
tegration of novel material combinations that significantly enhance their 
performance. These encouraging advancements indicate a promising ave-
nue for future investigation in energy conversion and storage technologies.

● Metal Chalcogenides

Metal chalcogenides are a group of inorganic compounds that com-
prise at least one chalcogen anion and one electropositive metal element. 
Metal chalcogenides have drawn significant attention for potential appli-
cations in PSC, which merge light energy harvesting with energy storage 
capabilities. 

One of the primary leverages of these 2D materials is a high specific 
surface area, combined with distinct electronic characteristics. Transi-
tion metal chalcogenides like molybdenum sulfides (MoS₂) and tungsten 
disulfide (WS₂) stand out due to their remarkable photoconductivity and 
their ability to promote efficient charge separation and transfer when ex-
posed to light. This enhances the electrochemical activity and charge 
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storage efficiency, which are critical for the development of high-perfor-
mance PSCs. 

Cui et al. (2019) emphasize the adaptability of 2D metal mono-, di-, 
and tri-chalcogenide nanosheets for optoelectronic applications. Integrat-
ing these materials into perovskite solar cell architectures enhances their 
excellent light absorption and electron mobility, resulting in improved 
energy conversion efficiency and increased charge storage capacity. Fur-
thermore, their compatibility with silicon-based technologies provides 
practical benefits for manufacturing and scalability (Cui et al., 2019). 

Madhusudanan et al. (2020) investigated the photoelectrochemical 
properties of quaternary chalcogenides, synthesizing Cu₂FeSnS₄ (CFTS) 
nanoparticles using a solvothermal method with varying polyethylene 
glycol (PEG) solvents and sulfurization. CFTS2 showed the best photore-
sponse under light, outpacing CFTS1 and CFTS3. Its enhanced light sen-
sitivity and capacitance were attributed to photo-induced charge carrier 
excitation and excess surface sulfur, which aid in defect-mediated charge 
storage. CFTS’s dual role as a photovoltaic absorber and light-responsive 
electrode suggests strong potential for supercapacitor applications (Mad-
husudanan et al., 2020). 

MoS₂-based composites have been developed by Guo et al. (2022) as 
multifunctional materials that harvest both thermal and electrical energy 
from solar radiation. They provide efficient solar steam generation and en-
ergy output under sunlight, achieving a power output of 3.35 mW m⁻² after 
30 minutes, with a voltage of approximately 300 mV and a current of 6.7 
μA. The power output drops to roughly 0.9 mW m⁻² under ambient settings. 
These porous structures, enhanced with carbon dots for light absorption, 
demonstrate a solar evaporation rate of 1.9 kg m⁻² h⁻¹ under full sunlight. 
Furthermore, storing energy in capacitors allows for continuous operation, 
even in the absence of consistent light exposure (Guo et al., 2022).

A conductive photoelectrode developed using Yb₂S₃:Cu₂S:ZnS was 
synthesized through spin-coating method from a single-source precursor 
and evaluated for its performance in photoelectrochemical cells. Electro-
chemical analysis, conducted through, linear sweep voltammetry (LSV), 
cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical 
impedance spectroscopy (EIS), revealed improved performance under il-
lumination. The electrode showed an increased photocurrent density in 
all evaluations, attaining a maximum specific capacitance of 789 F g⁻¹ 
(compared to 745 F g⁻¹ in the dark) and a peak photocurrent of 23.5 mA 
in the CA tests. The EIS analysis yielded a low series resistance (Rs) of 
23.4 Ω, indicating good conductivity (Gul et al., 2023). 
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Furthermore, hybrid structures that combine metal chalcogenides with 
other functional materials have emerged as an effective strategy to en-
hance PSC performance further. The synergistic effects of hybridizing 
metal chalcogenides with carbon-based materials or metal oxides contrib-
ute to enhanced stability and improved electrochemical properties (Du 
et al., 2023). This adaptability across various energy-related applications 
underscores the potential of metal chalcogenides in future energy tech-
nologies (Su et al., 2019).

Michalec et al. (2023) reported a comprehensive investigation to evalu-
ate the effect of heterojunctions formed between SnO₂/SnS₂ photocatalysts 
and different substrate materials on the photoelectrochemical performance 
of photoanodes. SnS₂, SnO₂, and SnO₂/SnS₂ flower-like (3D-2D) structures 
were synthesized via chemical bath deposition onto three types of sub-
strates: indium tin oxide-coated (ITO) glass, etched Ti, and Ti coated with 
a TiOx layer. The results revealed that interfacial phases formed between 
the photocatalysts and the substrates significantly influenced charge trans-
fer characteristics. This study highlights the critical role of substrate selec-
tion and heterojunction engineering in optimizing the performance of pho-
toelectrodes for solar energy conversion systems (Michalec et al., 2023). 

Additionally, significant efforts have focused on developing met-
al chalcogenide materials with optimized electrochemical performance 
through different synthesis methods. Tailoring the composition and size 
of metal chalcogenide nanoparticles enhances energy storage by improv-
ing charge transfer and maintaining structural integrity during repeated 
charge-discharge cycles (Eikey et al., 2020).

In the study by Gul et al. (2023), a high-performance transparent 
photoelectrode, Nd₂S₃:Ni₉S₈:Co₉S₈, was successfully synthesized using 
the spin coating deposition method with diethyl dithiocarbamate as the 
ligand. The photoelectrochemical behavior of the transparent electrode 
In:SnO₂/Nd₂S₃:Ni₉S₈:Co₉S₈ was studied using various electrochemical 
techniques. The electrode exhibited specific capacitance, reaching 946 
F g⁻¹ when exposed to light, and showed a significantly better photocur-
rent response in illuminated conditions than in the dark. These findings 
indicate that this material holds excellent potential for future applications 
in renewable energy storage systems powered by light (Gul et al., 2023). 

Recent advancements in metal chalcogenides show great promise for 
PSCs. Their unique properties, along with innovative fabrication tech-
niques, position them as key materials for next-generation energy storage. 
Ongoing research is essential to maximize their potential and integrate 
them into efficient energy systems.



International Studies in Science and Mathematics - June 2025 163

● Perovskites and Their Derivatives

Perovskites are typically represented as AMX3, with A denoting an 
organic or inorganic cation, M representing a metal ion, and X indicating 
an anion. Perovskites are auspicious materials recognized for their exten-
sive range of properties. These include dielectric, ferroelectric, thermo-
electric, electro-optic, conducting, and superconducting capabilities, in 
addition to their potential to modify the optical band gap. Recent progress 
in perovskites and their derivatives has highlighted their potential as ver-
satile materials for PSCS applications, enhancing energy conversion and 
storage.

A notable advancement is the incorporation of perovskite materi-
als into hybrid devices that combine the functionalities of photovoltaic 
cells and supercapacitors. For example, Ng et al. (2018) showed that ce-
sium lead halide perovskite—specifically methylammonium lead iodide 
(MAPbI₃)—can serve both as a light-absorbing layer and an energy stor-
age medium. This dual role enhances light harvesting and delivers excel-
lent charge storage capabilities, achieving an overall efficiency of 7.8% in 
their experiments (Ng et al., 2018).

A new three-terminal PSC has been developed by Song et al. (2022) 
to promote the sustainable use of solar energy. The obtained prototype 
integrates a perovskite solar cell with a symmetric supercapacitor (SSC), 
implementing concurrent energy harvesting and storage. Utilizing a func-
tion portfolio management strategy, the device enhances energy transfer 
between the perovskite solar cell and SSC units, thereby improving per-
formance and decreasing energy losses. The device shows remarkable cy-
cling stability, preserving efficiency with minimal degradation over 200 
cycles. Research conducted by Song et al. indicates a promising approach 
for developing high-efficiency, low-loss integrated PV-storage systems for 
future solar applications (Song et al., 2022). 

Notable advancements have been made in understanding the charge 
storage mechanisms at the interface between perovskite and electrolyte. 
Kumar et al. (2022) showcase the complexity of charge dynamics in per-
ovskite supercapacitors, emphasizing that the fundamental principles re-
main unclear due to the complex processes occurring at the interface. The 
study highlights the crucial role of optimizing ion conductivity in achiev-
ing high diffusion capacitance, a key factor for efficient energy storage.

Kumar et al. (2022) present a halide derived perovskite-based pho-
to-rechargeable SC that can store and harvest solar energy. They devel-
oped a porous perovskite-carbon composite electrode to enhance elec-
tronic conductivity and optimize photocapacitance. Under white light at 
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a power density of 20 mW cm⁻², the SC produced a photo-charging ener-
gy density of 160 mWh kg⁻¹ and a specific capacitance of up to 85 F g⁻¹ 
with 15% carbon content, which caused to a photo-conversion efficiency 
of approximately 0.02%. It achieved maximum chargeable energy and 
power densities of 30.71 Wh kg⁻¹ and 1875 W kg⁻¹, subsequently, while 
maintaining 94% of its initial capacitance after 1000 cycles of charge and 
discharge in the dark. The study highlights the benefits and challenges of 
halide perovskite materials in next-generation photo-rechargeable super-
capacitors (Kumar et al., 2022). 

Kumar et al. (2023) investigated the photo-capacitive behavior of 
two perovskite-based photoelectrodes: a mixed-halide perovskite (MHP, 
CH₃NH₃PbBr₂I) and a mixed-phase blend of CH₃NH₃PbBr₃ and CH₃N-
H₃PbI₃ (BP) in a 2:1 ratio. While BP electrodes showed higher capacitance 
in the dark due to better ion diffusion, they suffered from poor photo-per-
formance and stability caused by iodine loss and carrier trapping. In con-
trast, MHP electrodes exhibited more stable performance under illumina-
tion, achieving photo-energy densities of ~0.655 Wh kg⁻¹ (1500 LUX) and 
~1.6 Wh kg⁻¹ (90 mW cm⁻², 405 nm) with a photo-conversion efficiency of 
0.017%. BP electrodes yielded lower energy densities (~0.372 and ~0.316 
Wh kg⁻¹). These results highlight the importance of halide homogeneity 
and synthesis methods in optimizing the photo-capacitive properties of 
perovskite-based supercapacitors (Kumar et al., 2023).

Moreover, transition metal-doped perovskite oxides like SrFeO₃ illus-
trate the versatile potential of perovskites as electrode materials. Ahan-
gari et al. (2022) reported that such perovskite oxides demonstrate excel-
lent stability and specific capacitance, making them promising candidates 
for supercapacitor electrodes. Likewise, Diatta et al. (2024) explore Ba-
CoO₃, demonstrating that its mixed ionic and electronic conductivity can 
be utilized for energy storage and conversion applications.

Popoola’s group (2022) showcased a SC system for an all-inorganic per-
ovskite-based photo-rechargeable device in the three-electrode configura-
tion for efficient everyday applications. In the study, a lead-free symmetric 
PSC based on methylammonium bismuth triiodide (MBI) photo-capaci-
tive electrodes and a CPH-G gel electrolyte was assembled. Exceptionally, 
a ∼1275% enhancement in energy density was observed under light con-
ditions. The MBI:CPH-G PSC demonstrated excellent cycling stability, 
retaining 94.79% of its initial capacitance after 5000 cycles, with a final 
equivalent series resistance (ESR) of 55.61 Ω. Overall, the study presents 
a stable, lead-free, bifunctional PSC device that efficiently harvests and 
captures solar energy, showcasing impressive durability and notable en-
hancements in performance from light exposure (Popoola et al., 2022).
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Popoola et al. (2023) present a copper-halide perovskite-based (CHP) 
photo-induced electrochemical capacitor using lead-free copper antimo-
ny iodide (Cu₃SbI₆) rudorffite as symmetric electrodes. A polymer gel 
electrolyte that is non-aqueous was employed between the electrodes. 
Under illumination, the CHP EC achieved a capacitance enhancement of 
462%, with a max energy density of 9.98 μWh cm⁻² and a power density 
of 3.18 mW cm⁻². The CHP EC exhibited excellent cyclic stability, retain-
ing 93% of its initial capacitance after 10000 charge–discharge cycles. 
This study highlights a rudorffite-based CHP electrochemical capacitor 
that integrates energy harvesting and storage, suggesting further explo-
ration of other perovskite types in photo-rechargeable devices based on 
current advancements in PSCs and photo-batteries (Popoola et al., 2023). 

Samtham et al. (2024) synthesized BiFeO₃ (BFO) nanoparticles with 
rhombohedral crystal structure and an average particle size of ≈100 nm 
via a sol–gel auto combustion method. They examined their potential as 
electrode materials for photo-assisted supercapacitor applications. In a 3 
M KOH electrolyte exposed to visible light, BFO demonstrated a specific 
capacity of 21 C g⁻¹ and a specific capacitance of 110.5 F g⁻¹ at a rate of 
2 A g⁻¹, achieving a photo-efficiency of 26.77%. EIS indicated that pho-
to-excited particles enhanced redox kinetics and pseudocapacitive charge 
storage. Furthermore, BFO maintained 77.5% of its capacitance after un-
dergoing 1000 charge discharge cycles under illumination. (Samtha et al., 
2024). 

Hosseini et al. (2025) developed p-type lanthanum ferrite (LaFeO₃, 
LFO) perovskite photoelectrodes via electrodeposition onto FTO glass 
and WO₃–TiO₂ nanotubes (WT) for photo-rechargeable supercapacitors. 
The LFO@WT photoelectrode exhibited exceptional photoresponsivity, 
achieving a maximum areal capacity of 3.5 mAh cm⁻² under illumination, 
corresponding to a sevenfold enhancement compared to dark conditions. 
The symmetric hybrid photo-supercapacitors (HPSC) showed a peak are-
al capacity of 0.06 mAh cm⁻² and an energy density of 0.15 mWh cm⁻² at 
76.5 mW cm⁻², while the asymmetric device achieved 2.67 mAh cm⁻² and 
9.34 mWh cm⁻² at 84.1 mW cm⁻². The asymmetric LFO@WT//LFO@
FTO HPSC also delivered a power density of 215.8 mW cm⁻² and main-
tained 89% capacity retention after 4000 cycles in the dark environment, 
with a 3% increase under illuminated environment (Hosseini et al., 2025).  
These results indicate that doping methods can significantly improve the 
electrochemical performance of perovskite materials. 

The advancements in perovskites and their derivatives highlight their 
multifunctional properties and significant potential for practical applica-
tions in energy conversion and storage. Ongoing research uncovers new 
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features and optimization methods, positioning perovskites as vital to ad-
vancing future energy technologies.

3.1.2. Organic Photoactive Materials

Recent developments in conducting polymers (CPs) and organic pho-
tovoltaic materials, such as P3HT and PCBM, have shed important light 
on their roles in perovskite solar cells (PSCs), which integrate energy har-
vesting and storage functionalities. Those materials, renowned for their 
unique attributes such as high electrical conductivity, flexibility, and ease 
of processing, are being increasingly explored as electrodes for superca-
pacitors that also exhibit photoactive properties.

Chen et al. (2010) reported an innovative plastic photo-rechargeable 
capacitor utilizing a three-electrode system that combines a flexible 
DSSC and a supercapacitor, both of which feature a common Pt electrode. 
A thick TiO2 film is created by treating TiO2 nanocrystals with isopropyl 
alcohol through electrophoretic deposition, followed by mechanical com-
pression to improve connectivity. The supercapacitor employs a thick film 
of PEDOT for energy storage. The DSSC features a 10.9 μm TiO2 film and 
achieves an electric conversion efficiency of 4.37% under sun illumina-
tion. The combined device exhibits a specific capacitance of 0.52 F cm−2. 
This work presents a promising approach for flexible PSC applications, 
highlighting the need to enhance photoelectrode efficiency for broader 
adoption in plastic devices (Chen et al., 2010). 

Wee et al. (2011) pioneered the integration of organic photovoltaics 
in the creation of a PSC, marking a significant advancement in this field. 
This cutting-edge technology harnesses the benefits of organic solar cells 
to create a printable, all-solid-state device. The PSC incorporates a PE-
DOT: PSS layer that functions as the electron donor and a poly(3-hexylth-
iophene: phenyl-C61-butyric acid methyl ester (P3HT: PCBM) layer that 
runs as the electron acceptor. Additionally, a carbon nanotube solution 
is applied to an aluminum cathode, which serves as the electrode for the 
supercapacitor (Wee et al., 2011).

Zhang et al. (2013) introduced a polymer solar cell combined with 
a SC in a wire composition, referred to as an energy fiber. The device 
consists of a titania nanotube-modified Ti wire and aligned multi-walled 
carbon nanotubes (MWCNT) as electrodes. When light strikes the het-
erojunction of P3HT:PCBM, excitons are generated, which split into elec-
trons and holes; electrons travel through the nanotubes to the Ti wire, 
and the MWCNT sheets collect holes. The maximum efficiency achieved 
was 1.01% for a wire length of 1.8 μm, with 90% of the power conversion 
efficiency remaining after 10 days. The solar cell is connected to the SC 
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during the photo-charging phase, while during the discharging phase they 
stay disconnected. Electrochemical testing via GCD reveals an energy 
density of 1.61 × 10−7 Wh cm−2 and an energy conversion efficiency of 
65.6%. Cyclic voltammetry reveals strong capacitive characteristics, with 
a specific capacitance of 0.077 mF cm−2. For MWCNT sheets thicker than 
20 μm, the efficiencies of photoelectric conversion and storage are deter-
mined as approximately 0.82% (Zhang et al., 2013). 

Takshi et al. (2015) demonstrated that composite films combining a 
conductive polymer and a dye can serve being photoactive electrodes in 
electrochemical cells, enabling simultaneous solar energy conversion and 
charge storage. A device established with polyethylenedioxythiophene: 
polystyrene sulfonate (PEDOT:PSS) and a porphyrin dye achieved a ca-
pacitance of approximately 1.04 mF, charging to 430 mV under simulated 
sunlight and maintaining the charge for over 10 minutes in darkness. The 
findings indicated that the dye-to-conducting polymer ratio is vital for 
optimizing both photovoltage and capacitance. Furthermore, with a Ru-
based dye, we recorded a photovoltage of 198 mV and charge stability 
exceeding 2 hours (Takshi et al., 2015). 

Xu et al. (2016) presented an integration of perovskite solar cells into 
photo-supercapacitors (PSCs), employing MAPbI3 for the active layer 
alongside a PEDOT carbon electrode to link the solar cell with the SC. 
The device configuration, structured as FTO/perovskite/TiO2/ZrO2/PE-
DOT carbon electrode, achieved an open-circuit voltage of 0.71 V, capac-
itance ranging from 10.8 to 12.8 mF cm−2, an energy density of 7.83 × 10−7 
Wh cm−2, and a power density of 7.4 mW cm−2. This system adeptly merg-
es solar energy conversion with supercapacitive storage; the photogene-
rated electrons and holes are stored in the PEDOT-carbon electrodes. It 
reached a peak efficiency of 4.70% and demonstrated a notable energy 
storage efficiency of 73.77%. Nonetheless, the overall efficiency is limited 
by both the performance of the perovskite solar cells and the traits of the 
PEDOT-carbon electrode (Xu et al., 2016). 

The use of compact electronics which powered by solar cells is on 
the rise, but these devices often experience unstable power output due to 
variations in sunlight. PSCs, which seamlessly integrate solar cells for 
energy conversion with supercapacitors for energy storage, are designed 
to overcome this challenge. Organometal halide perovskite solar cells can 
acquire impressive power conversion efficiencies of up to 22.1%, while 
PANI/carbon nanotube (CNT) composite supercapacitors (PANI/CNT 
SCs) provide outstanding energy storage potential. Nonetheless, the com-
bination of perovskite derived solar cells and PANI/CNT supercapacitors 
poses particular difficulties, notably the risk of water from the superca-
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pacitor’s electrolyte damaging the perovskite solar cell absorber.

Liu et al. (2017) developed a PSC that utilizes CH3NH3PbI3 (MAPbI3) 
as the absorber, combined with a PANI/CNT SC, incorporating a carbon 
nanotube bridge to connect the two components. This setup achieved a 
specific area capacitance of 422 mF cm−2, a coulombic efficiency of 96%, 
and an overall energy storage efficiency of 70.9%. PANI/CNT SC dis-
played stable power output across various lighting conditions, making it a 
promising option for solar-powered portable devices. 

In their  study performed in 2018, Das et al. (2018) explored a novel 
solar cell that uses cadmium sulfide quantum dots and hibiscus (hb) dye 
co-sensitized TiO2 as the photoanode, paired with a Poly(3,4-ethylene-
dioxypyrrole)@Manganese dioxide (PEDOP@MnO2) counter electrode. 
The photo-charging of PEDOP@MnO2 is displayed in Fig. 2. This design 
serves as both a solar cell and a supercapacitor, acquiring a short-cir-
cuit current of 17.3 mA cm−2, an open-circuit voltage of 0.746 V, and an 
storage efficiency of 6.11%. The supercapacitor demonstrated a specific 
capacitance of 155 F g−1, with energy and power densities of 13.7 Wh 
kg−1 and 397.7 W kg−1, respectively. This innovative PSC design, which 
utilizes a single long electrode with PEDOP@MnO2 coatings, effectively 
captures visible light while being a low-cost alternative to traditional pho-
toanodes. The combination of PEDOP’s high conductivity and MnO2’s 
redox capacitance enhances both charge storage and power conversion 
efficiency, making it a approach for energy conversion and storage tech-
nologies (Das et al., 2018).

Fig. 2 Schematic of the PSC during photo-charging. Reprinted with permission 
from (Das et al., 2018). Copyright (2018) American Chemical Society.

Speranza et al. (2023) presented a PSC concept that employs laser-in-
duced graphene (LIG) as a flexible counter electrode in DSSCs. By di-
rectly writing with a laser on a polyimide film, they developed electrodes 
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that perform effectively with both I⁻/I₃⁻ and Cu(II/I) redox couples. The 
assimilated device with a Cu(II/I) redox mediator achieved a short-cir-
cuit current density of 1.2 mA cm⁻², an OCP of 0.94 V, and a fill factor 
of 0.75.  Remarkably, the flexible LIG (F-LIG) electrodes demonstrated 
higher catalytic performance for the reduction of I₃⁻ compared to plati-
num-based electrodes and outperformed electrodeposited PEDOT for a 
copper bipyridyl complex electrolyte. The F-LIG-based DSSCs exhibited 
an open-circuit voltage of 0.94 V and a significant increase in photocon-
version efficiency, improving from 3.08% to 4.96%. The one-step laser 
fabrication enabled the integration of the LIG-based DSSC with a super-
capacitor, creating a flexible energy harvesting and storage system capa-
ble of self-charging under both solar and artificial light. This development 
holds promise for self-powered devices in the Internet of Things (IOT) 
(Speranza et al., 2023). 

In conclusion, recent advancements in conducting polymers make 
them auspicious materials for future PSCs. By leveraging their unique 
properties, these polymers can significantly enhance the efficiency of en-
ergy storage devices, ultimately leading to the development of more sus-
tainable and adaptable energy solutions.

3.1.3. Hybrid and Carbon-Based Photoactive Materials

MOFs are increasingly recognized as strong contenders for photo su-
percapacitors due to their distinct structural and chemical characteristics. 
Obtained of metal ions and connected by organic ligands, these materials 
exhibit high porosity, customizable pore sizes, and potential for conduc-
tivity, which makes them well-suited for energy storage applications.

The study by Li et al. (2014) introduced a model that illustrates the 
incorporation of MOF materials into dye-sensitized solar cells (DSSCs). 
For the first time, MOF-5 was successfully integrated into a ZnO film 
via screen printing, leading to the creation of hierarchical ZnO paral-
lelepipeds after calcination, which acted as an efficient scattering layer. 
This innovative method utilized ZnO parallelepipeds with a dimension 
between 300 and 500 nm, derived from MOF-5 precursor, which greatly 
enhanced the performance of DSSCs. The results showcase the potential 
of MOFs in photovoltaic applications and suggest that further exploration 
of other MOFs could yield similar benefits (Li et al., 2014). 

A series of zirconium(IV) coordination polymer thin films containing 
Ru(II)L2L′ (with L = 2,2′-bipyridyl and L′ = 2,2′-bipyridine-5,5′-dicarbox-
ylic acid), known as RuDCBPY, were developed as sensitizers for solar 
cell applications. MOF-sensitized solar cells successfully generated pho-
tocurrent under simulated sun illumination, and emission lifetime mea-
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surements demonstrate over 90% efficiency in exciton quenching at the 
MOF–TiO2 interface resulting from electron injection. While the efficien-
cies remained below 1%, these MOF-sensitized solar cells outperformed 
a monolayer of the same dye on TiO2, underlined their potential for solar 
energy applications (Maza et al., 2016). 

Furthermore, recent research highlights the importance of using MOFs 
in the development of composite materials that can improve photoactiv-
ity. A TiO2 aerogel–MOF nanocomposite was synthesized by Alwin et 
al. (2018) using a sol–gel method and employed as a photoanode in qua-
si-solid DSSCs. The TiO2 aerogel–MOF nanocomposite reached a power 
conversion efficiency of 2.34% and a short-circuit current density of 6.22 
mA cm⁻². To enhance performance in DSSCs, controlling the density of 
electron-trapping sites by adjusting the MOF content in the composite is 
essential (Alwin et al., 2018). 

In a different study, Dong et al. (2024) developed a composite elec-
trode known as NiCo2 S4 @NiCo-LDH (NCS@NC-LDH) for an efficient 
asymmetric supercapacitor (ASC). This composite electrode maximizes 
the utilization of photo-induced charge carriers, yielding impressive per-
formance metrics, including a specific capacitance of 3286.25 F g-1 and 
a retention rate of 97%. The energy density of the ASC increased from 
63.29 Wh kg-1 to 83.2 Wh kg-1, mainly due to chemical interactions that 
enhance charge storage. (Dong et al., 2024). 

Ifraemov et al. (2019) demonstrate that a MOF-based electrode can 
switch its function from photo-anodic to photocathodic by altering the re-
dox mediators in the electrolyte. The study also provides proof of concept 
for hydrogen production using a MOF-photocathode, highlighting new 
opportunities for solar fuel generation. The performance of MOF-based 
electrodes is determined by the charge transfer at the interface, not by the 
inherent properties of charge carriers (Ifraemov et al., 2019). 

A significant development is the incorporation of conductive materi-
als, such as MXenes, with TiO2 to enhance charge transport properties. 
Lee et al. (2014) created a composite powder of TiO2  nanoparticles and 
MWCNTs through a hydrothermal process. This powder was then trans-
formed into a film using doctor blading and sensitized with copper-based 
MOFs through a layer-by-layer deposition method. The results indicated 
that the inclusion of carbon nanoenhancers boosts electron transfer, re-
sulting in a nearly 60% improvement in power conversion efficiency. The 
integration of MWCNTs into the TiO2  film decreases interfacial charge 
transfer resistance and speeds up electron transfer, greatly enhancing 
photovoltaic performance (Lee et al., 2014). 
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Colak et al. (2024) developed dual electrodes utilizing ZnO nano-
flakes and Ti3C2Tx-based MXene paper for a PSC device. The incorpo-
ration of MXene enhanced the capacitive contribution by nearly fourfold 
compared to using only ZnO PSC, thanks to enhanced surface oxidation 
and reduction reactions and electrical double layer formation. The max-
imum energy and power densities reached 57.3 μWh cm-² and 11.1 mW 
cm-², respectively, under UV irradiation at an operating voltage of 2.5 V, 
with an impressive areal capacitance of 151.5 mF cm-². The ZnO/MXene//
MXene-PSC showed excellent stability, maintaining 100% coulombic ef-
ficiency and 98% capacitance retention over 10000 galvanostatic cycles. 
Although the ZnO/MXene//CP PSC retained 70% of its capacitance after 
7 days, the ZnO/MXene//MXene/CP PSC experienced approximately an 
85% loss, probably because of UV-induced aging of the MXene paper 
(Colak et al., 2024). 

Carbon materials are intrinsically advantageous because of their ele-
vated surface area, excellent conductivity, and customizable properties, 
which are vital for the effective functioning of supercapacitors. A signif-
icant trend involves creating hybrid carbon materials that merge the ben-
efits of various carbon allotropes, including activated carbon, graphene, 
and CNTs.

Wang et al. (2022) presented a self-powered PSC with bulk micro-ma-
chined three-dimensional porous asymmetric electrodes, created using 
the deep reactive-ion etching technique, for detecting ultraviolet radiance 
(UV). The porous CNT@TiC/CNT@TiO2 PSC achieves an areal capaci-
tance of 2.69 mF cm-² at 5 mV s-1 and 7.35 mF cm-² at 20 μA cm-² after the 
photo-charge process. Its optical response is linearly proportional to UV 
power intensity, with a photoresponsivity of 14.8 mA W-1 and a photocur-
rent density of 354  μA cm-² under 15 mW cm-² UV intensity, resulting in 
a photo-to-dark current ratio of 12. When integrated on-chip, the PSC can 
illuminate a white LED for more than 60 seconds at a UV intensity of 10 
mW cm-², demonstrating practical applications in UV monitoring systems 
(Wang et al., 2022). 

In photo supercapacitors, a lever to boost energy storage capacity, 
carbon materials are effectively combined with various components. For 
example, integrating graphitic carbon nitride with metal oxides enhances 
light-harvesting capabilities and improves electrochemical performance 
under light exposure. The study by Altaf et al. (2023) showcases the crit-
ical ratios for graphene oxide/zinc oxide (GO/ZnO) composites in the 
performance of PSC. The best-performing GO/ZnO composites achieved 
a specific capacitance of 6612 mF g−1 after UV illumination, reflecting 
a 2.7-fold increase. These devices achieved 99.6% capacitance retention 



172  . Melisa ÖĞRETİCİ, Kibar ARAS, Sinem ORTABOY SEZER

and 100% Coulombic efficiency across 30000 charge-discharge cycles. 
The maximum energy density reached 6.3 Wh kg-1, alongside a power 
density of 625 W kg-1 at a 2.5 V operating voltage under UV light. The 
study highlights a critical ratio for GO/ZnO composites that enhances the 
performance of PSCs. Future research could aim at creating lightweight 
devices that effectively convert and store solar energy through various 
heterojunctions or composite materials (Altaf et al., 2023). 

Zheng et al. (2022) developed a PSC device that integrates a CdS/
CdSe quantum dot sensitized solar cell with an activated carbon-based 
supercapacitor, using a mutual electrode and aqueous electrolytes. The 
device achieved an overall efficiency of 2.66% during photo-charging and 
galvanostatic discharging at 1 mA cm-², along with an areal capacitance 
of 132.83 mF cm-² and an energy density of 23.9 mJ cm-². It maintained 
76.7% of its initial efficiency after 100 cycles, demonstrating good stabil-
ity. This integrated device effectively harvests, converts, stores, and re-
leases solar energy. When exposed to solar irradiation, it quickly charges 
to 0.6 V in just seconds and can discharge in both light and dark settings, 
which makes it ideal for compact, self-powered electronic devices (Zheng 
et al., 2022). 

3.2. Electrolytes for Enhanced Photoactivity

Research into photo-active electrolytes has contributed significantly to 
the advancement and efficiency of PSCs, which integrate energy harvest-
ing and storage functionalities. These electrolytes are crucial for enhanc-
ing the electrochemical performance of PSCs by introducing additional 
Faradaic reaction pathways, thereby improving energy density and charge 
storage capabilities.

The majority of harvesting-supply (HS) devices discussed in the liter-
ature exhibit a maximum voltage of less than 1 V, mainly because they 
utilize a single solar cell. Scalia et al. (2018) report an exception, achiev-
ing a voltage just under 2.3 V with an HS device that contains eight or-
ganic solar cell modules and a graphene-based supercapacitor utilizing 
1 M tetraethylammonium tetrafluoroborate in propylene carbonate (PC) 
as the electrolyte. They noted that the voltage is limited by the electro-
lyte’s reaction with the electrode, which reduces the device’s lifespan. 
Their attempt to connect two SCs in series also faced stability issues. 
In contrast, they present a new, highly stable HS device fabricated on a 
glass substrate. This design uses a W-type dye-sensitized solar module 
with four cells in series, paired with a supercapacitor utilizing activated 
carbon (AC) and the ionic liquid N-butyl-N-methylpyrrolidinium bis(tri-
fluoromethanesulfonyl)imide  (Pyr14TFSI) as the electrolyte. This ionic 
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liquid exhibits better thermal stability than organic electrolytes, such as 
PC, which can cause voltage saturation above approximately 2.2 V, even 
with higher OCP, indicating instability and irreversible behavior (Scalia 
et al., 20158). 

Gel polymer electrolytes (GPEs) represent a promising class of materi-
als that successfully blend the advantages of solid and liquid electrolytes. 
Typically, these electrolytes consist of a polymer matrix completely im-
mersed in a liquid electrolyte. This distinctive structure offers mechani-
cal stability and high ionic conductivity, positioning GPEs as a desirable 
choice for numerous applications in batteries and energy storage technol-
ogies.

The study by Harankahawa et al. (2017) investigates redox capaci-
tors as a potential energy storage option, focusing on the fabrication of a 
DSSC that enhances these capacitors. The DSSC was developed using a 
gel polymer electrolyte (GPE), which offers several advantages compared 
to traditional liquid electrolytes. GPEs mitigate common issues associ-
ated with liquid electrolytes, such as leakage and short lifespan, thereby 
enhancing the stability and durability of the DSSC. Initial results for the 
DSSC include an open circuit potential (VOC) of 0.68 V, short circuit 
current density (JSC) of 0.33 mA cm−2, fill factor (FF) of 0.24, and ef-
ficiency (η) of 0.05%. The redox capacitor was charged for 722 seconds 
and fully discharged in 36 seconds, with satisfactory stability observed. 
The optimal GPE composition consisted of polyacrylonitrile (PAN), so-
dium iodide (NaI), ethylene carbonate (EC), and PC, resulting in a room 
temperature conductivity of 4.29 × 10−3 S cm−1. This research marks the 
first attempt in Sri Lanka to couple a DSSC with a redox capacitor. As 
interest in solar energy expands in the region, this study seeks to enhance 
research into effective energy storage solutions. Current efforts will con-
centrate on enhancing the performance and stability of both the DSSC 
and redox capacitor (Harankahawa et al., 2017). 

A simple and low-cost method for preparing this composite gel elec-
trolyte is described by Lai & Fan (2022). PANI-based gel material has 
shown excellent charge storage, photovoltaic, and electrochromic proper-
ties. A hybrid device for solar energy harvesting and charge storage was 
created by layering the gel between a TiO2-coated electrode and a carbon 
electrode, achieving an open-circuit voltage of 137 mV under light with 
only a 10 mV drop after 600 seconds of darkness. While these devices are 
traditionally electrochemical, the use of the composite gel enables a novel 
design with a single-layer material that is active throughout. Modifying 
the gel with various additives may result in cost-effective and efficient 
devices, necessitating additional research on how changes in materials 
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impact energy storage and photovoltaic characteristics (Lai & Fan, 2022). 

In a separate study, Wang et al. (2020) created reversible ion-conduct-
ing switches via photoswitchable sol-gel transitions. The ion gel was pro-
duced by mixing azobenzene (Azo), poly(N-isopropylacrylamide) (PNI-
PAm), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)
imide ([C2mim][NTf2]). The gel’s structure was designed to mirror the 
principles of control theory, comprising sensor, amplification, and action. 
The light-induced isomerization of Azo initiates the macroscopic sol-gel 
transition of PNIPAm assemblies, which influences ionic movements and 
produces notable switching behavior. When exposed to UV light, the 
sol-like state of Azo/PNIPAm/[C2mim][NTf2] exhibited increased ion 
conduction, while the gel state demonstrated reduced conduction. Fig. 3 
shows the graphical illustrations of these mechanisms. This photoswitch-
able ion conductivity device was incorporated into a well-structured logic 
gate, enabling the switching of circuits on or off (Wang et al., 2020). 

Fig. 3 Photoswitchable ionic circuits at 28 °C: (a) In the gel state, the red light 
is on while the yellow light is off in the absence of UV irradiation; (b) In the 

sol state, the yellow light is on and the red light is off when UV light is applied. 
Reprinted with permission from (Wang et al., 2020). Copyright (2020) American 

Chemical Society.

Nie et al. (2020) created a synthetic platform that highlights the revers-
ible photoswitch properties of diarylethene-based polymeric ionic liquids 
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(DAE-based PILs). These solid PIL films enable tunable ionic conduc-
tivity, achieving a reduction of up to 70% upon irradiation. This light 
sensitive feature allows for effective in situ spatiotemporal patterning and 
local conductivity control. The copolymer (PEO-stat-PAGE-DAE-BF4) is 
expected to advance research in PIL materials, offering promise for smart 
electrical circuits and wearable photodetectors. The non-invasive photo-
modulation process eliminates the need for additional chemical agents, 
laying the groundwork for future mechanistic studies. Ongoing research 
aims to develop imidazolium-containing photoswitches with enhanced 
fatigue resistance and thermal stability, also to investigate how ion-poly-
mer interactions influence ion transport (Nie et al., 2020). 

The reliability of light-harvesting photovoltaic systems with charge 
storage components is essential for their effectiveness in fluctuating 
weather conditions. Skunik-Nuckowska et al. (2021) demonstrated a por-
table solar charger that combines a silicon solar cell with an advanced hy-
brid supercapacitor utilizing activated carbon electrodes and iodide-based 
aqueous electrolyte to stabilize power output during fluctuations. The op-
timized supercapacitor module has a capacitance of 60 F and a voltage 
of 3 V, achieved through specific series and parallel connections of the 
CR2032 coin cells. Their evaluation demonstrated its effectiveness for 
pulse electronic applications under various laboratory conditions (tem-
peratures of 15 and 25 °C, and solar irradiance levels of 600 and 1000 W 
m-²). Redox Electrolyte Hybrid Energy Storage (REHES) was introduced 
for this solar charger, enabling enhanced capacitance, improved energy 
output, and optimized charge-discharge dynamics. The charger can fully 
charge the supercapacitor in approximately 2 hours, with minimal impact 
from temperature changes, ensuring reliable performance during cloud-
less days in European latitudes during the second and third quarters, from 
8:00 to 16:00 (Skunik-Nuckowska et al., 2021).  

Kim et al. (2025) presented reversible photo-switchable supercapac-
itors using azobenzene-containing polymer electrolytes that undergo a 
gel-to-sol transition when exposed to light, achieving a 3206% increase in 
ionic conductivity. These devices offer a capacitance modulation of 105% 
with a 4-minute response time and improved self-discharge under visi-
ble light, enhancing long-term energy storage potential. Photo-switchable 
supercapacitors achieve an areal capacitance of 1.84 mF cm-² with rapid 
modulation driven by light exposure, showcasing exciting possibilities for 
versatile energy management in future applications (Kim et al., 2025). 

Bhaumik et al. (2025) have introduced an innovative design for a 
photo-rechargeable supercapacitor that employs an aqueous solution of 
2-nitrobenzaldehyde as its electrolyte, complemented by activated char-
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coal electrodes. This design leverages the photoinduced transformation of 
2-nitrobenzaldehyde into labile benzoic acid derivatives, which generates 
redox-active ionic species and contributes to a substantial increase in ca-
pacitance.  The device achieves a specific capacitance of 320 F g−1 cm−2 
when configured in a three-electrode system and about 90 F g−1 cm−2 in a 
two-electrode system (Bhaumik et al., 2025). 

4. FUTURE PERSPECTIVES AND OUTLOOKS

The future perspectives for PSCs appear immensely promising, es-
pecially as technological advancements significantly enhance energy 
conversion and storage capabilities. PSCs, which integrate photovoltaic 
elements with supercapacitors, are at the forefront of research aimed at 
developing sustainable energy solutions. Their capability to convert and 
store solar energy constitutes a pivotal advancement toward realizing en-
ergy efficiency and autonomy in portable and wearable devices.

A key aspect of the future development of PSCs is their integration 
with advanced materials that enhance performance. Recent studies high-
light that using materials such as mesoporous carbon in monolithic struc-
tures can significantly improve energy conversion efficiency. Additional-
ly, the performance of PSCs heavily relies on the active components used, 
including the photoanode, sensitizers, and electrolytes.

The increasing interest in flexible and lightweight applications for en-
ergy devices, particularly in wearables, highlights another trend in the 
development of PSCs. Jin et al. formulated the creation of all-printed PSC 
fibers designed for self-charging applications (Jin et al., 2020). This in-
novation addresses existing consumer demands for mobile energy solu-
tions and aligns with the growing emphasis on integrating energy har-
vesting with practical consumer electronics. The investigation of halide 
perovskites as energy storage materials, as noted by Zhang et al., further 
signifies a robust future direction for lightweight photo-rechargeable sys-
tems capable of seamless integration into daily applications (Zhang et al., 
2020).

In considering the future of energy storage, the technology roadmap 
for photovoltaics outlines a comprehensive strategy to tackle the challeng-
es related to energy delivery and storage systems. There is a growing de-
mand for systems that can efficiently balance the variability of renewable 
energy sources. This need is highlighted in several reviews that explore 
how integrated renewable systems can improve energy stability (Sinsel 
et al., 2020; Chirapongsananurak & Santoso, 2018). This understanding 
arises from the necessity for advanced energy storage solutions to ensure 
grid reliability and reduce system costs, especially with the increasing 
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global capacity for photovoltaics.

In conclusion, the prospects for PSCs will likely include innovations 
in material science, optimization of efficiency, integration with wearable 
technologies, and the development of integrated systems that harmonize 
energy generation and storage. Ongoing advancements in these domains 
are essential for realizing the full potential of PSCs and enhancing their 
role in fulfilling future energy requirements.
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Drosophila melanogaster

Drosophila melanogaster is a eukaryotic organism in the family Dro-
sophilidae of the order Diptera of the class Insecta of the animal kingdom. 
Drosophila melanogaster larvae are also called fruit flies because they 
develop on spoiled fruits.

Phylum : Arthropoda (arthropods)

Subphylum : Mandibulata-Antennata

Class : Insecta-Hexapoda (insects-six-leggeds)

Subclass : Pterygota (winged)

Superordo : Mecopteroidea (long-winged) 

Order : Diptera (double-winged)

Suborder : Brachycera (short-antennaed) 

Family : Drosophilidae (vinegar flies)

Genus : Drosophila

Species : Drosophila melanogaster (Wheeler, 1981)

Drosophila melanogaster has spread from its ancestors in Africa to all 
parts of the world except Antarctica (Lachaise et al., 1988), and has been 
one of the most widely used model organism in genetic studies for over 
100 years (Haudry, Laurent, & Kapun, 2020).

Researches on Drosophila genetics has led to numerous discoveries in 
the fields of cell biology, developmental biology, neurobiology and beha-
vior, molecular biology, evolutionary genetics, and population genetics 
(Jennings, 2011; Tolwinski, 2017).

Genetic studies on D. melanogaster began in 1901, when William 
Castle’s team used it in the laboratory at Harvard University, and is still 
continuing (Ong, Yung, Cai, Bay, & Baeg, 2015; Tolwinski, 2017).

Drosophila is the first eukaryotic organism has its genome, which 
is approximately 180 Mb, completely sequenced (Haudry et al., 2020). 
There are known mutations of approximately 14,000 genes thought to be 
present in Drosophila, as well as many uncharacterized genes with no 
orthologs (Ong et al., 2015; Tolwinski, 2017).
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In the 1920s, Hermann Muller discovered that X-rays greatly increa-
sed the mutation rate in Drosophila genes and could break chromosomes 
(Ong et al., 2015; Tolwinski, 2017). Thomas Hunt Morgan (1866–1945) 
discovered sex-linked inheritance, the existence of linked genes, and io-
nizing radiation caused mutations in genes in Drosophila to prove and 
expand the hypotheses of Mendelian genetics (Kohler, 1994).

Drosophila is so superior to other model organisms, with more tissue 
types and a greater variety of observable behaviors, and the extensive 
genome data available for many species within the genus, that it has made 
it possible to study the principles of genetics and understand modes of 
inheritance in many organisms (Jennings, 2011; Tolwinski, 2017).

The use of D. melanogaster as a model organism in laboratory studies 
is due to the advantages it provides thanks to its features. These are; Dro-
sophila cultures provide ease of examination in laboratories due to their 
small size (they are large enough for rapid demonstration of mutant phe-
notypes), they can be stored as bee offspring, they have 4 pairs of chromo-
somes, they produce a large number of embryos or flies (offspring) rapidly 
at a time (they are easily cultured, they reproduce rapidly), they have short 
and traceable life cycles and life spans), they can be anesthetized quickly 
and easily and can be easily distinguished morphologically, they show 
great similarity with mammals in terms of genetic mechanisms, they are 
easy to maintain and have low usage costs, they can be stored as a large 
number of stocks in the laboratory, they are easy to work with, and there 
are generally very few restrictions on work (Jennings, 2011; Tolwinski, 
2017).

Culture of Drosophila melanogaster

Drosophila cultures should be stored in a clean place at 20 to 25 °C 
(68 to 77 °F). When Drosophila is kept in culture at around 21 °C (70 °F), 
adult flies emerge in 14 days. The optimum living conditions of Drosop-
hila is 25 ± 1°C and 40-60% relative humidity, and the average develop-
ment time from egg to adult is 9-11 days (Bernards & Hariharan, 2001). 
If the flies cultured at 18°C, adults flies   become in approximately 19 days. 
(Flatt, 2020; Koyama, Texada, Halberg, & Rewitz, 2020)

Drosophila is generally cultured in a standard nutrient medium in an 
incubator set to provide the optimum living conditions and a 12-hour li-
ght and 12-hour dark period. Drosophila medium contains 104 g of corn 
flour, 94 g of sugar, 19 g of yeast, 5 g of agar, 6 ml of weak acid and 1020 
ml of distilled water. After the mixture of corn flour, sugar and water in 
the specified amounts is mixed and boiled over low heat, agar is added to 
the mixture and left to boil for a short time. The mixture is taken off the 
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heat and the Drosophila medium, which is prepared by adding weak acid 
due to its antifungal effect, is poured into 250 ml sterile bottles with a 
thickness of 2 cm. Then, the mouths of the bottles are closed with lids pre-
pared with gauze and cotton and left to dry. In addition to standard food, 
Drosophila instant food is also used for Drosophila nutrition. Drosophila 
eggs/larvae are placed in falcons 50/100 ml tubes containing 1.5/4.5 g of 
Drosophila ready-made food moistened with 5/9 ml of distilled water and 
the mouth of the tubes are closed with sponge plugs.

The materials needed to grow Drosophila and perform experimen-
tal crosses include culture dishes, stoppers, medium, anesthetic (ether), 
a fine brush, a pen for labeling, and a magnifying glass or microscope 
(Lefevre, Ashburner, & Novitski, 1976).

Life Cycle of Drosophila melanogaster

Drosophila is an insect that undergoes complete metamorphosis with 
four different stages in its life cycle. These stages are, in order: egg (embr-
yonic), larva, pupa and adult (Gui & Grant, 2008). The life cycle and 
longevity of Drosophila are affected in different ways by external factors 
such as temperature, nutrition, population density, radiation and humidity, 
as well as internal factors such as mating, maternal age, egg production, 
sex and genetic structure At 21°C (72°F), the embryonic and larval stages 
of D. melanogaster are completed in eight days, which the pupal stage is 
completed in six days (Osaba, Rey, Aguirre, Alonso, & Graf, 2002).

Development of Drosophila occurs in two stages: the embryonic pe-
riod and the postembryonic period. The embryonic period begins with 
the fertilization of the egg and continues until the larva hatches. The pos-
tembryonic period includes all the changes from a larva until an adult 
(Bate, 1993). 

In the Drosophila life cycle, the development of the embryo takes one 
day, the first and second larva take one day each, the third larva take two 
days, the prepupa takes 4 hours and the pupa takes 4-4.5 days (Wurgler, 
1986). The survival time of the adult fly is about 40-50 days (Mitchell & 
Combes, 1984).

Eggs are 0.5 mm long, oval shaped and transparent in appearance. The 
outer side of the egg is covered with a membrane called chorion. A pair 
of filaments extending dorsally from the anterior end prevents the egg 
from sinking into the soft nutrient medium (McMillan, Fitz-Earle, But-
ler, & Robson, 1970). During embryogenesis, the body outline is deter-
mined along the anterior-posterior and dorsal-ventral axes by maternally 
derived determinant genes. Following hatching, the white and segmented 
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worm-like larvae that continuously feed and move through the medium, 
showing food-seeking behavior, and at the end of the larval stage, they 
reach a weight of 0.05 mg to 0.20 mg and a length of 4-4.5 mm (Mitchell 
& Combes, 1984).

The renewal of the cuticle layer twice, called molting, during larval 
development for reasons of adaptation to body size increase and food 
storage for use in metamorphosis, divides larval life into three stages. 
The period between two molts is called instar. Structures called imaginal 
discs are observed during development of embryo. Imaginal disc cells 
develop by mitosis during the larval period until the pupal stage, and they 
form the different organs of the adult, most of which are in a mature stru-
cture, at the pupal stages (Lefevre et al., 1976).

Towards the end of the third instar, the larvae leave the medium and 
climb the walls of the bottles, and with the hardening of the cuticrcle, 
they stabilize their location and develop into yellow-brown, protective 
chitin-based pupae. During the pupal stage, some larval organs that are 
not needed in the adult stage are eliminated, the larval body shortens, 
and metamorphosis process in which it undergoes detailed changes to 
complete its final body outline at 4-5 days begin for the fly. During this 
transformation process, Drosophila cannot feed from the external envi-
ronment and converts stored nutrients into the energy it needs to survi-
ve. Upon completion of development, adult flies emerge by piercing the 
anterior part of the pupal case (M Ashburner, 1978; Mitchell & Combes, 
1984).

 Newly emerged adults are initially light-colored and have elongated 
bodies, but within a few hours their colors darken, their initially wrinkled 
wings open, and they attain the normal adult appearance (Lefevre et al., 
1976).

Adults are 2-3 mm long and females are slightly longer than males. 
The body segments are head, thorax and abdomen. The head and tho-
rax are covered with hairs that serve as sensory organ. The head, which 
consists of six segments, has honeycomb eyes on both sides, three simple 
eyes on top and two antennae. The thorax consists of three segments and 
each segment has a pair of legs. The second segment has a pair of wings, 
while the wings on the third segment are vestigial and have turned into 
a halter organ (Olgun & Yurtsever, 2003). The females have a 7-segment 
abdomen that is evenly colored with melanin, while the males have 5 ab-
dominal segments that are fused, and the tip of the abdomen is dark. In 
addition, the tip of the abdomen is pointed in females and blunt in males. 
Since the coloration of the abdomen is not complete in adult males, the 
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dark rows of hairs on their forelegs, called sex combs, are decisive. All of 
the above-mentioned characteristics are used to determine sex (Mitchell 
& Combes, 1984; Olgun & Yurtsever, 2003).

Virgin females can reach sexual maturity 3.5-4 hours after emerging 
from the pupa and can lay eggs 12 hours later. Males can mate a few hours 
after emerging from the pupa (Houk, 1992).

Virgin Flies

Virgin females should be selected for genetic crosses because a female 
fly can store sperm from a single insemination and use it for most of her 
fertility. However, male flies do not have to be virgin. 

Adult flies mature in about 8-12 hours and they are fertile for as long 
as they live. Adult flies are removed from the culture medium 8-12 hours 
before and mature virgin females are selected before 12 hours. When fe-
male flies are kept alone in culture bottles for 3-4 days, larvae should not 
appear. Afterwards, female flies are kept in crossbreeding bottles with 
male flies to perform fertilization and embryogenesis and lay fertilized 
eggs (Bernards & Hariharan, 2001; Houk, 1992).

In order to select the flies to be used in the crossbreeding, they are 
anesthetized for 5-10 minutes by inhaling ether in the culture medium. 
Excessive ether treatment can sterilize and even kill the flies. For this rea-
son, pale flies that have just emerged from the pupa and whose wings have 
not yet fully opened should not be selected as they may become sterile. 
Flies whose wings and legs extend at right angles to their bodies should 
be considered dead (Lindsley, 1968). 

Sorting 

Adult flies are collected by inhaling ether until sufficient are obtained, 
then counted. Anesthetized flies are placed on white paper and moved 
with a fine brush. If Drosophila strains do not carry special sex markers, 
they can be examined under a microscope at a magnification of at least 
x12 - x15 to distinguish species and sex is distinguished as male and fe-
male. Dead or discarded flies are left in a morgue consisting of water and 
detergent in a bottle (Demerec, 1994).

Sex Determination

The sex of Drosophila can determinate with attached X inheritance, in 
which sex-linked phenotypes as sex markers. While daughters inherit any 
sex-linked character from their mothers, sons inherit it from their fathers 
in attached X strains (Strickberger, 1962).
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In Drosophila, the diploid cells have four pairs of chromosomes (2n:8), 
including the first pair of sex chromosomes and three pairs of autosomes 
(Houk, 1992).

Female flies have two X chromosomes, while male flies have one X 
and one Y chromosome (Mitchell & Combes, 1984). X chromosomes 
are rearranged between sexes in generations, while the presence of the 
Y chromosome is unimportant in determining the sex of Drosophila. In 
Drosophila, the sex is determined by ratio of X chromosomes to number 
of chromosome sets of chromosomes. While a value is less than or equal 
to ½, the sex of Drosophila is male, a value is equal to or greater than 1, 
it is female. Additionally, if the flies have a value between ½ and 1, they 
are intersex.

Female flies in the attached X strain have one pair of attached X ch-
romosomes and one Y chromosome, while male flies have an X chromo-
some and a Y chromosome. Attached X chromosomes do not separate 
during meiosis. While daughters are made of attached X eggs cross with 
Y-carrying sperm, sons are formed from fertilization of Y-carrying eggs 
by X-carrying sperm.

Y chromosomes, which are formed from the union of egg and sperm, 
do not continue development after the early embryonic stage, while rarely 
three X chromosomes survive as a superfemale 25 (Solomon, Berg, & 
Martin, 2004).

Experimental Mating 

The first cross between Drosophila strains belongs to the parental ge-
neration P1. Offspring of the first cross, first daughter or son generation, 
is called F1, and the next generation is F2.

For crossbreeding, equal numbers of 6 pairs of male and virgin female 
flies belongs to two different strains are placed in the same culture bottle. 
After 7-10 days, F1 flies are removed from the culture and counted under 
anesthesia for 10 days. 

Similarly, for producing the F2 generation, 6 pairs of male and female 
flies that do not need to be virgin are selected from the F1 generation and 
placed in a culture bottle and kept for 7-10 days, then removed from the 
medium and the F2 offsprings begin to emerge after 12-14 days at 21 °C. 
The new generation when begin to appear is counted every other day for 
10 days. While more female flies develop than males in the culture on the 
first day, production of male flies increase in the following days to balance 
the sex ratio. Since there may be flies that develop slowly due to sex and 
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mutants, counting shorter or longer than 10 days are not appropriate. In 
addition, the counted flies should not be added back to the culture medi-
um.

When additional cultures should set up for reciprocal crosses, the op-
posite sex of each strain for crossover should be selected (Solomon et al., 
2004).

Genetic Nomenclature, Symbols and Phenotypes

There is a standard name and abbreviation for the representation of 
each mutation. While lowercase letters are used for the name and the abb-
reviation of a recessive gene, the name and the abbreviation of a dominant 
gene start with a capital letter.

The location of a mutation, which is on the chromosome at position on 
genetic linkage map of Drosophila is indicated numerically in parenthe-
ses following the gene name or abbreviation.

Eyes: Phenotypes of different stocks with different eye color, shape 
and size (e.g.: wild type, Homozygous aristapedia, Resessive sex-linked 
white, Recessive autosomal eyeless, Recessive autosomal sepia, Domi-
nant sex-linked Bar, Dominant autosomal Lobe).

Antennae: wild type (+) and mutant Homozygous aristapedia (spine-
less-aristapedia.

Bristles: wild (+), singed (1-21.0), forked (1-56.7), Stubble (3-58.2), spi-
neless (3-58.5), shaven (4-3.0).

Body Color: wild type (+), yellow (1-0.0), mutant ebony (3-70.7)

Wings: Wing venation (e.g.: wild (+), crossveinless (1-13.7), radius in-
completus), wing shape (e.g.: wild (+), Curly (3-50.0), scalloped (1-51.5), 
apterous (2-55.2), vestigial (2-67.0), dumpy (2-13.0), Dichaete (3-41.0), 
curved (2-75.5) and wing size.

Except in cases of sex linkage or dominance, all F1 generation flies 
have wild phenotypes and are heterozygous. In first son generation, the 
phenotypic character will emerge only if the female parent carry a ho-
mozygous sex-linked mutation (Lindsley, 1968).

EXPERIMENTAL CROSSES

Monohybrid Crosses 

For monohybrid inheritance, two Drosophila cultures are used, one 
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winged (wild type)  and the other wingless (apterous) (2-55.2). In both fru-
it fly strains, the marker specifics are sex-dependent, with females have 
red eyes and yellow bodies, while males have white eyes and gray bodies. 
The wild type strain has normal wings and is indicated by the gene (+). 
The mutant wing spesific is winglessness, in the apterous (2-55.2)  strain 
is caused by the apterous (abbreviated as ap) gene. When winged female 
flies (+/+) are crossed with wingless (ap/ap) male flies at P1, all flies have 
the genotype (+/ap) and are winged in the F1 generation. Because the wild 
wing gene (+) is dominant, while the mutant wing gene ap is recessive.

When F1 females crossed with F1 males to produce the F2 generation, 
the expected ratio is 3 wild type: 1 apterous (Campbell, 2006; Fairbanks 
& Rytting, 2001; Pierce, 2015). 

Recessive Gene: For the inheritance of autosomal recessive genes that 
are not linked to sex, reciprocal crosses between wild (red eyes, normal 
wings)  males and apterous (no wings) females are made. When F1 female 
cross with F1 male, the expected ratio for the F2 generation is 3 wild type: 
1 apterous. 

Also, dumpy (2-13.0) (truncated wings), vestigial (2-67.0) (reduced 
wings and halteres)  or sepia (3-26.0) (eyes change from brownish red to 
black with age) or ebony  (3-70.7) (Body gradually turns black in adults. 
Allow flies to age several hours or a day before classifying) strains can 
cross with the wild type strain. 

In addition, brown, vestigial, vestigial brown, dumpy, sepia strains 
can be used for the inheritance of the recessive gene (Campbell, 2006; 
Fairbanks & Rytting, 2001; Pierce, 2015)

Testcross: When any of the F1 flies are backcrossed with the mutant 
parent, the expected ratio for the offspring is 1 apterous:1 wild type. The 
offspring have wingless and winged phenotype and reflect the heterozy-
gous genotype (+/ap) of the wild type F1 flies (Ahluwalia, 2009).

Dominant Gene: Reciprocal crosses between the wild type flies and 
Lobe (2-72.0) (reduced eye)  flies are made for dominant gene inheritance. 
The expected ratio for the F2 generation is 3 Lobe:1 wild. Also, Wrinkled 
(3-46.0) (wrinkled wings) strain can also cross with the wild type strain 
(Campbell, 2006; Fairbanks & Rytting, 2001; Pierce, 2015).

Sex Linkage on Recessive Gene: Sex-linked inheritance in Drosop-
hila was first discovered by Thomas Hunt Morgan in 1910. After finding 
a white-eyed male fly, Morgan developed breeding strains for white eyes 
and showed that the white-eye gene was linked to the X chromosome.
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Reciprocal crosses are made between wild type and white (1-1.5) (whi-
te eyes) strains for inheritance of the sex linkage on recessive gene. İf a 
wild female fly cross with a white male fly with a recessive sex-linked 
mutation, only half of the males show phenotypic results of the mutation 
in F2 generation, which is the only difference from a cross of a recessive 
autosomal mutation.

İf a white female fly cross with a wild type male fly with a recessive 
sex-linked mutation, white-eyed males flies and red-eyed females repro-
duce in F1 generation. Expected ratio for the F2 generation is 1 wild type: 
1 white, with half of each sex have white eyes (Campbell, 2006; Fairbanks 
& Rytting, 2001; Pierce, 2015).

Sex Linkage on Dominant Gene: Reciprocal crosses are made 
between wild type and Bar(1-57.0) (the smallest eye in males and homoz-
ygous females, kidney shaped eyes in heterozygous females) strains for 
sex linkage inheritance on dominant gene. İf a wild female cross with a 
Bar-eyed male with a sex-linked mutation, all F1 females are Bar and all 
F1 males are wild. The expected ratio for the F2 generation is 1 wild:1 Bar, 
with half of each se have Bar eyes.

İf a homozygous Bar female cross with a wild type male with the 
sex-linked mutation, all F1 flies have Bar eyes. The expected F2 ratio is 3 
Bar:1 wild, with half the males are wild type (Campbell, 2006; Fairbanks 
& Rytting, 2001; Pierce, 2015).

Dihybrid Crosses 

Autosomal Genes: Vestigial strain cross with sepia strain for autoso-
mal gene inheritance. İf a vestigial-winged (2-67.0) (reduced wings and 
halteres) and red-eyed female cross with a winged and sepia-eyed (3-26.0) 
(eyes change from brownish red to black with age) male, all genotypes in 
the F1 generation are wild heterozygotes (+/vg, +/se), winged and red-e-
yed. The expected F2 ratio is 9 wild type: 3 vestigial: 3 sepia: 1 vestigial; 
sepia. 

Also; vestigial and ebony strains or apterus and sepia strains can cross 
for autosomal gene inheritance (Klug, Cummings, Spencer, Palladino, & 
Killian, 2003).

Gene Interaction: When crosses are made between brown (2-104.5) 
(eye pale red-brown, darkening with age) and scarlet (3-44.0) (eyes bright 
red; ocelli colorless) strains for gene interactions, all flies homozygous 
for both brown and scarlet will have white eyes. The expected F2 ratio 
is 9 wild: 3 brown: 3 scarlet: 1 white (brown; scarlet). The ratio may not 
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be achieved because of reduced survival rate of white-eyed flies (Klug et 
al., 2003).

Sex Linkage on Autosomal Genes: İf white; vestigial (1-1.5; 2-67.0) 
(white eyes; reduced wings and halteres) females cross with wild type 
males, wild females and white males reproduce equally in F2 generation. 
The expected F2 ratio is 3 white: 3 wild: 1 white; vestigial: 1 vestigial 
(Klug et al., 2003).

Linkage Group

Linkage Between Two Autosomal Genes: The inheritance of autoso-
mal genes is achieved by crosses between wild and a chromosome strain 
with two non-sex linked recessive mutations, such as sepia; spineless (3-
26.0; 3-58.5) (eyes change from brownish red to black with age; spineless 
bristles) or sepia; ebony (3-26.0; 3-70.7) (eyes change from brownish red 
to black with age; Body gradually turns black in adults. Allow flies to 
age several hours or a day before classifying)  or black; vestigial (2-48.5; 
2-67.0) (black body; reduced wings and halteres) or vestigial; brown (2-
67.0; 2-104.5 (reduced wings and halteres; eye pale red-brown, darkening 
with age). The F1 females are backcrossed with mutant strains. Parental 
and recombinant types are seen in the strain (M. Ashburner, 1989; Strick-
berger, 1962).

Two Sex-Linked Genes: Yellow miniature (1-00; 1-36.1) (yellow body 
and scute bristles;  miniature wings)  or white miniature (1-1.5; 1-36.1) 
(white eyes;  miniature wings)   or white-eosin forked (eosin eyes; forked 
bristles) females cross with wild type males for the inheritance of two 
sex-linked genes. Also, yellow white (chromosome 1) females can be se-
lected for tight linkage (M. Ashburner, 1989; Strickberger, 1962).

Three Sex-Linked Genes: White miniature forked (1-00; 1-36.1; 
1-56.7), (white eyes; miniature wings; forked bristles), yellow white mi-
niature (1-00; 1-1.5; 1-36.1) yellow body and scute bristles; white eyes; 
miniature wings), black vestigial brown (2-48.5; 2-67.0; 2- 104.5) (black 
body; wings and halteres reduced; brown eyes),  spineless-aristapedia (3-
58.5) (spineless bristles-ends of antennae enlarged and leg-like)  strains 
cross for the inheritance of three sex-linked genes.

In addition; for double crossovers; yellow crossveinless vermilion for-
ked (1-00; 1-13.7; 1-33.0; 1-56.7) (yellow body and scute bristles; crossve-
inless wings; vermilion eyes; forked bristles) strain can select (M. Ash-
burner, 1989; Strickberger, 1962).
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Determination of Linkage Group

For determination which of the four linkage groups of Drosophila a 
given mutant belongs to females of the mutant strain cross with Curly/
Plum (chromosome 2); Dichaete/Stubble (chromosome 3) (curled wings; 
resebling brown eyes with darker spots; hairless bristles; short and thick 
bristles) males. 

İf only F1 males show the mutation, it is a sex-linked recessive. 

İf all the F1 flies show the mutation, it is dominant. İf wild-type fe-
males cross with F1 males of one of the four phenotypes: Curly;Dichaete, 
Curly;Stubble, Plum;Dichaete or Plum;Stubble, a sex-linked dominant 
will appear only in females. The type with the two dominant mutant ge-
nes that will least interfere with classification of the mutant (other than 
dumpy and black) should be selected as parents. While Curly/Plum (chro-
mosome 2) and Dichaete/Stubble (chromosome 3) do not appear as domi-
nant, chromosome 4 with two dominant genes show independent variety 
as dominant. 

İf the mutation is an autosomal recessive, females of the mutant stra-
in cross with F1 males of one of the four phenotypes: Curly;Dichaete, 
Curly;Stubble, Plum; Dichaete or Plum; Stubble. The type with the two 
dominant mutant genes that will least interfere with classification of the 
mutant (other than dumpy and black) should be selected as parents. While 
Curly/Plum (chromosome 2) and Dichaete/Stubble (chromosome 3) do not 
appear as recessive, chromosome 4 with two dominant genes show inde-
pendent variety as recessive. 

İn addition, Hairless/Stubble (3-69.5; 3-58.2) (hairless bristless; short 
and thick bristles)  can be used instead of Dichaete/Stubble (M. Ashburn-
er, 1989; Strickberger, 1962).

Statistical Analysis

The evaluation of the agreement between the number of individuals 
(actual count) and the expected number in the records is done by the 
chi-square method. The calculated probability of 0.05 or less indicates 
that the experimental data significantly deviates from the theoretical ex-
pectation. The degrees of freedom and the calculated chi-square value 
indicate that difference between actual number and the expected number 
will happen by random chance more than X times (Strickberger, 1962). 
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