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Element Cycles and the Position of Fungi in Ecosystems
In natural ecosystems, the circulation of elements occurs as a result of 
the complex and multifaceted interaction of biotic and abiotic processes. 
Essential elements such as carbon, nitrogen, phosphorus, sulfur, and 
metals are constantly exchanged between soil, water, atmosphere, and 
living organisms, ensuring the continuity of ecosystem functioning. 
In these cycles, fungi, particularly due to their direct contact with 
soil and organic matter, occupy a strategic position in the fixation, 
transformation, and redistribution of elements. The ability of their large 
surface area mycelial networks to reach different microhabitats makes 
fungi key biological actors in regulating element Dynamics (Treseder 
ve Lennon, 2015; Mayer et al., 2021). Regional studies conducted in 
Türkiye demonstrate that fungal community composition, particularly 
macrofungi and myxomycetes, shows high habitat specificity and 
functional diversity, which directly influences decomposition capacity 
and element cycling dynamics at the ecosystem scale (Ergul et al., 2005a; 
Ergul et al., 2005b Ergül and Akgül, 2011; Akata et al., 2018). Fungi 
have the capacity to accumulate both essential nutrients and potentially 
toxic elements in their biomass by taking them up from the environment. 
This feature transforms fungi from passive element acceptors into active 
regulators that directly influence the bioavailability and mobility of 
elements within the ecosystem. Through element accumulation, fungi 
have a decisive impact on nutrient balance, primary productivity, and 
ecosystem resilience to environmental stresses (Treseder and Lennon, 
2015). Filamentous fungi decompose complex organic compounds such 
as lignin and cellulose, releasing carbon, nitrogen, and phosphorus, 
a process central to the soil organic matter cycle. While decomposer 
fungi are characterized by rapid carbon mineralization and CO₂ release, 
some fungal groups are identified as “stress tolerants,” producing 
structures such as resinous compounds, β-glucans, and trehalose, which 
decompose more slowly and support long-term carbon accumulation. 
These differences in community composition directly affect the size 
and persistence of soil carbon stocks (Treseder and Lennon, 2015; 
Mayer et al., 2021). Global studies have revealed a strong correlation 
between fungal biomass and persistent soil carbon bound to reactive 
minerals. Hyphae–mineral interactions accelerate the decomposition 



 . 223International Reviews, Research and Studies in the Field of Biology

of organic matter while simultaneously enabling fungal necromass to 
bind to mineral surfaces, contributing to the persistence of carbon in 
the soil for thousands of years. This dual effect demonstrates that fungi 
play simultaneous roles in both carbon release and carbon sequestration 
processes (Wang et al., 2025). There are significant differences in 
element accumulation among fungal guilds. Soil saprotrophic fungi 
support fast-cycle systems with relatively high nitrogen and phosphorus 
content in their stem tissues, while wood-rotting fungi are associated 
with slower decomposition and carbon accumulation due to high C:N 
ratios and low nitrogen content. Ectomycorrhizal fungi, on the other 
hand, support long-term cycles by directing carbon to the root zone 
with their relatively low nitrogen and phosphorus content (Liu et al., 
2020; Mayer et al., 2021; Pánek et al., 2024). 
When evaluated in terms of the bioavailability of nutrients, 
ectomycorrhizal fungi can release nitrogen and phosphorus from 
organic matter through enzymatic systems, Fenton chemistry, and 
priming effects. Phosphorus solubility is increased by the secretion of 
organic acids and phosphatases, while water and nutrient uptake by 
plants is effectively supported through mycelial networks (Sağlıker and 
Darıcı, 2007; Nehls and Plassard, 2018; Liu et al., 2020). Arbuscular 
mycorrhizal fungi, even under conditions of global warming and 
nitrogen accumulation, can regulate plant carbon-nitrogen-phosphorus 
stoichiometry, simultaneously increasing both nutrient turnover rate and 
nutrient stability (Mei et al., 2024; Ma et al., 2025). In aquatic ecosystems, 
decomposer fungi regulate nutrient flow by intensely immobilizing 
nitrogen and phosphorus on leaf litter. In these systems, while the C:N 
ratio of fungal biomass generally remains constant, the C:P and N:P 
ratios show flexibility depending on the ambient phosphorus level; 
excess phosphorus is stored through lux uptake, creating a buffering 
effect in nutrient cycles (Yaşar et al., 2009; Gulis et al., 2017). In arid 
and nutrient-poor microhabitats, fungal networks transport water, 
carbon, and nitrogen, ensuring the maintenance of bacterial activity and 
indirectly supporting microbial processes and element cycling (Worrich 
et al., 2017). Fungi also significantly influence the behavior of metals 
and phosphates within the ecosystem. By exposing rocks and minerals 
to bioaerobic conditions, fungi facilitate the dissolution of metals and 
phosphates, and can stabilize these elements through binding on the 
cell surface, intracellular deposition, or biomineralization processes. 
Biomineralization mechanisms, such as the formation of calcium oxalate 
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and metal phosphate, affect both plant nutrition and the immobilization 
of pollutants by altering the mobility and toxicity of metals (Gadd, 
2017; Gadd, 2021). Biomineralization processes occurring in the root 
zone can contribute to the retention of toxic metals in the rhizosphere 
and the re-vegetation of contaminated areas. This demonstrates that 
fungi play functional roles not only in nutrient cycling but also in 
ecosystem restoration and the management of contaminated areas 
(Gadd, 2017; Gadd, 2021). From a nitrogen fixation perspective, fungal 
networks can immobilize nitrogen in biomass, limiting the release of 
mineral nitrogen despite microfauna grazing. This feature indicates 
that nitrogen fixation, rather than nitrogen mineralization, is dominant 
in fungal-dominant systems and constitutes an important mechanism 
in the long-term regulation of ecosystem productivity (Ghaderi et al., 
2025). As soil fertility increases, the rise in saprotrophic fungi and 
oxidizing enzyme activity leads to increased tree growth and nutrient 
cycling rates, along with a decrease in carbon and nitrogen stores in 
the organic layer (Mayer et al., 2021). Conversely, excessive nitrogen 
accumulation can shift fungal communities towards more stress-tolerant 
species, leading to weakened decomposition capacity and altered carbon 
sequestration dynamics. However, fungal species tolerant to extreme 
conditions such as high temperature, salinity, acidity, and pollution can 
maintain decomposition and nutrient cycling even under these stresses, 
contributing to the long-term resilience of forest ecosystems (Sağlıker 
and Darıcı, 2005; Treseder and Lennon, 2015; Gadd, 2017; Moore et 
al., 2021; Talal et al., 2025).

Mechanisms of Element Uptake and Accumulation in Fungal Cells
Element accumulation in fungi occurs through the simultaneous and 
coordinated operation of numerous cellular and molecular mechanisms. 
These mechanisms are generally classified into two main groups: passive 
and active processes, based on metabolic energy requirements. Passive 
processes involve the binding of elements to cell wall components 
without energy expenditure, while active processes involve the 
controlled uptake and distribution of elements into the cell via specific 
carrier proteins, ion channels, and intracellular compartmentalization. 
The combined operation of these two processes enables fungi to survive 
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even in heavy metal-rich or contaminated environments (Robinson 
et al., 2021; Gajewska et al., 2022; Shi et al., 2024; Zbieralski et al., 
2024). Field investigations on wild mushrooms reveal that heavy metal 
accumulation is frequently associated with elevated oxidative stress 
markers, indicating a tight physiological link between elemental uptake 
and redox regulation in fungal cells (Akgül et al., 2016; Sevindik et 
al., 2017a).The fungal cell wall is one of the essential structures 
forming the first line of defense in elemental accumulation. Thanks to 
the carboxyl, phosphate, hydroxyl, and amine groups found in chitin, 
glucans, melanin, proteins, and polysaccharides, the cell wall acquires 
a strong anionic surface property and can adsorb metal ions without 
requiring metabolic energy. This passive biosorption mechanism has 
been reported to be effective for numerous metals such as copper, zinc, 
cadmium, lead, and mercury; FTIR and SEM-EDX analyses have shown 
that metals interact with amino, carbonyl, hydroxyl, and phosphoryl 
groups on the cell wall (Chen et al., 2019; Gajewska et al., 2022; Šebesta 
et al., 2022; Kurniawan et al., 2023; Gori et al., 2025). Among cell wall 
components, melanin holds a privileged position in terms of its metal-
binding capacity. Melanin, which is abundant in black mushrooms, 
acts as a strong binder for highly toxic metals such as Cr(VI), forming 
an effective external barrier that limits the diffusion of metal ions into 
the cell. Similarly, it has been shown that exocellular polysaccharides 
produced by mushrooms can bind more than 60–80% of zinc, cadmium, 
and lead in a short time and rapidly reduce the bioavailability of metals 
in the environment (Medina-Armijo et al., 2024; Jaroszuk-Ściseł et 
al., 2025). In addition to metals held at the cell surface by passive 
mechanisms, fungi can control elemental balance at a more subtle level 
through active uptake and intracellular regulation processes. Metal ions 
are taken up into the cell via specific carrier proteins and channels; 
these carriers include high and low affinity systems for iron, ZIP-like 
carriers for zinc, and various divalent cation carriers. These active 
uptake processes are tightly regulated at the gene level depending on 
environmental metal abundance and cellular requirements (Kosman, 
2003; Shi et al., 2019; Robinson et al., 2021). Instead of being left free 
in the cytoplasm, metals taken up into the cell are rapidly complexed 
with binding molecules. Metallothioneins, glutathione, and other low 
molecular weight chelators convert metal ions into less toxic forms, thus 
limiting cellular damage. These complexation mechanisms contribute 
to the preservation of metabolic integrity of fungal cells by creating a 
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rapid and flexible response system to metal stress (Robinson et al., 2021; 
Gajewska et al., 2022). Long-term control of excess metal accumulation 
is mostly achieved through vacuolar sequestration. Vacuolar transporters 
such as Zrc1/Cot1 for zinc, Ccc1/VIT1 family proteins for iron, and 
divalent cation transporters for metals such as cadmium and lead play 
a critical role in this process. The proton gradient created via V-ATPase 
facilitates the transport of metals into the vacuole, reducing cytoplasmic 
toxicity. TEM-EDX-based studies support this multi-compartment 
storage strategy by confirming that copper, lead, zinc, and cadmium 
accumulate in both the cytoplasm and vacuoles (Sorribes-Dauden et 
al., 2020; Robinson et al., 2021; Shi et al., 2024). When these cellular 
processes are considered together, it is seen that element accumulation 
in fungi is organized as a multi-layered defense network. The basic 
components of this network include immobilization via the cell wall, 
melanin, and exocellular polysaccharides on the outside; complexation 
with chelator proteins and sequestration in vacuoles on the inside; and, 
when necessary, removal of metal ions from the cell via efflux pumps. 
This holistic organization makes fungi extremely resilient organisms 
both in naturally metal-rich niches and in contaminated soils and 
waters (Robinson et al., 2021; Gajewska et al., 2022; Shi et al., 2024; 
Zbieralski et al., 2024). Consequently, element accumulation achieved 
by fungi through a combination of passive and active mechanisms 
enables not only cellular survival but also the control of environmental 
metal mobility and toxicity. These characteristics make fungi powerful 
bioremediation agents in the biological containment of heavy metal 
pollution and environmental remediation strategies; they offer a 
strategic biological infrastructure for the sustainable management of 
element cycles (Kurniawan et al., 2023; Tamjidi et al., 2023; Jamir et 
al., 2024; Gori et al., 2025).

Accumulation of Essential and Toxic Elements by Fungi
Elements accumulated by fungi are generally classified into two main 
groups based on their functional properties: essential and toxic. Essential 
elements such as potassium, calcium, magnesium, iron, zinc, and copper 
are crucial for maintaining fungal metabolism and play fundamental 
roles in enzyme catalysis, energy production, osmotic balance, and the 
maintenance of cell wall and membrane integrity. Fungi can efficiently 
absorb these elements, even when present in low concentrations 
in the environment, thanks to their high-affinity uptake systems, 
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and store them in their biomass (Gerwien et al., 2018; Alselami and 
Drummond, 2023). Experimental cultivation studies have shown that 
substrate composition significantly affects mineral accumulation and 
oxidative balance in edible mushrooms, highlighting the importance of 
environmental conditions in determining elemental profiles (Sevindik 
et al., 2016; Gürgen et al., 2020).Essential metals function as necessary 
cofactors for metabolic processes at low concentrations, but can 
exhibit toxic effects in cases of excessive accumulation. Therefore, 
fungi have developed homeostatic mechanisms that tightly control 
metal uptake and intracellular distribution. Studies in various fungal 
species reveal that calcium, potassium, magnesium, iron, and zinc 
become significantly enriched in mycelium and sporocarps depending 
on environmental conditions, and that this accumulation is regulated 
by species-specific metabolic strategies (Gerwien et al., 2018; Ye et 
al., 2022; Krzesłowska et al., 2025; Mleczek et al., 2025; Wikandari et 
al., 2025). Experimental studies conducted under controlled conditions 
have shown that mushroom biomass can be enriched with essential 
elements. In filamentous mushrooms grown for food purposes, it 
has been reported that the addition of iron, zinc, and calcium to the 
culture medium can increase the levels of these minerals in mushroom 
biomass by 5 to 13 times, and that growth performance is not negatively 
affected when applied at appropriate doses. These findings indicate that 
mushrooms have significant potential in terms of nutrient enrichment 
and functional food production (Wikandari et al., 2025). In contrast, 
toxic elements such as cadmium, lead, mercury, arsenic, and chromium 
pose a potential stressor for fungi. However, many fungal species are 
able to retain these elements in their cell wall components, vacuoles, 
or biomass by forming complexes with metal-binding proteins and 
organic acids, thus limiting their toxic effects. This detoxification 
capacity enables fungi to survive in heavy metal-rich natural niches 
or contaminated environments (Domka et al., 2019; Han et al., 2019; 
Dhalaria et al., 2020; Khalid et al., 2021; Priyadarshini et al., 2021; You 
et al., 2021; Ahammed et al., 2023; Zhao et al., 2024; Tariq and Farhat, 
2025). Mycorrhizal and endophytic fungi play a particularly important 
role in regulating the mobility of toxic elements within the ecosystem. 
Arbuscular mycorrhizal fungi can restrict the mobility and entry of 
metals such as cadmium and lead into root tissues by forming complexes 
with these elements through dense hyphal networks they create around 
the roots and the glomalin they secrete. This immobilization mechanism 
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constitutes an effective first line of defense for plants exposed to metal 
stress (Dhalaria et al., 2020; Zhao et al., 2024). At the intracellular 
level, mycorrhizal fungal vesicles and other fungal vacuoles provide 
high-capacity storage areas for heavy metals, preventing the transport 
of toxic elements into plant tissues. Findings based on meta-analyses 
show that arbuscular mycorrhizal fungi reduce the concentration of 
potentially toxic elements in plant shoots in contaminated soils by an 
average of 24%, while slightly increasing metal accumulation in the 
roots. Depending on the species and metal concentration, it has been 
reported that the transport of elements such as zinc and cadmium 
from the root to the shoot can be suppressed or controlled (You et 
al., 2021; Han et al., 2021; Chen et al., 2023; Ma et al., 2026;). The 
plant protective effects of mycorrhizal fungi are not limited solely to 
physical immobilization. These fungi contribute to limiting metal-
induced oxidative stress by stimulating antioxidant enzymes such as 
superoxide dismutase, catalase, and peroxidase, as well as glutathione 
and phytochelatin systems. Similarly, endophytic fungi enhance plant 
metal tolerance by binding metals, retaining them in cell walls and 
organelles, and promoting plant growth; in this respect, they function as 
a “biological shield” similar to mycorrhizal fungi (Domka et al., 2019; 
Dhalaria et al., 2020; Khalid et al., 2021; You et al., 2021; Zhao et al., 
2024; Ma et al., 2026). When evaluated at the ecosystem scale, the ability 
of wood-decaying and soil fungi to accumulate both essential and toxic 
metals at high levels leads to the formation of characteristic “element 
profiles” specific to species and decay type. These profiles determine 
the speed and direction of metal cycles, exerting powerful influences on 
the nutrient balance and environmental security of ecosystems. Thanks 
to processes such as sorption, bioaccumulation, biotransformation, and 
precipitation of heavy metals, fungi stand out as powerful biological 
agents for mycoremediation applications (Priyadarshini et al., 2021; 
Chaurasia et al., 2023; Gori et al., 2025; Krzesłowska et al., 2025; 
Mleczek et al., 2025). 

The Effect of Element Accumulation on Ecosystem Functioning 
and Trophic Networks
Fungal element accumulation profoundly affects ecosystem functioning 
not only through micro-scale cellular processes but also through trophic 
networks. Elements accumulated in fungal biomass can be transported to 
higher trophic levels by invertebrates, insects, and microfauna that feed 
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on the fungi; this process supports the balanced distribution of essential 
elements within the ecosystem, while also carrying the potential risk of 
biomagnetism in the case of toxic elements. In this respect, fungi shape 
ecosystem dynamics as “bridge organisms” that both store elements 
and transport them along biotic networks (Crowther et al., 2012; Hauer 
et al., 2025; Junggebauer et al., 2025). Beyond nutrient transfer, fungal 
biomass represents a source of bioactive compounds with antioxidant, 
antimicrobial, and neuroprotective properties, which may indirectly 
influence trophic interactions and organismal fitness across food webs 
(Mohammed et al., 2019; Sevindik et al., 2021; Sevindik et al., 2017b). 
Fungal-derived element accumulation in soil ecosystems has indirect 
but powerful effects on plant productivity and species composition by 
determining the speed and direction of nutrient cycles. Ectomycorrhizal 
and arbuscular mycorrhizal fungi can intensively store nitrogen and 
phosphorus in their mycelial networks; arbuscular mycorrhizal fungal 
mycelium, in particular, has been shown to constitute a significant 
nutrient reservoir underground with a phosphorus content more than 20 
times higher than that of plant tissues. This mycelial deposition leads 
to the redistribution of C–N–P stocks on a fine spatial scale, indirectly 
altering soil heterogeneity, and consequently plant species composition 
and productivity (Waring et al., 2016; Sağlıker et al., 2025; Xu et al., 
2025; Zhang et al., 2025). Saprotrophic fungi decompose complex 
organic substances such as lignin and cellulose, mineralizing carbon and 
nitrogen and making these elements accessible again to plants and other 
microorganisms. This process is considered one of the fundamental 
mechanisms controlling the balance between soil carbon storage and 
solubility. Fungal-induced changes in decomposition rates determine 
both the efficiency of the nutrient cycle and the long-term dynamics 
of soil organic matter stocks (Treseder and Lennon, 2015; Wang et al., 
2025; Xu et al., 2025). The transfer of elements accumulated in fungal 
biomass along trophic networks occurs primarily through soil fauna. 
Soil invertebrates such as columbali, mites, worms, and diplopods meet 
a large portion of their energy and nutrient requirements from fungal-
derived carbon and nitrogen; in many soil systems, fungal channels 
stand out as the primary energy pathway. These organisms accelerate the 
redistribution of nutrients both horizontally and vertically by transporting 
the elements they take up with fungal hyphae to higher trophic levels via 
their biomass and excrement (Crowther et al., 2012; Junggebauer et al., 
2025; Hauer et al., 2025). In aquatic ecosystems, element accumulation 
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and transfer by fungi occur through unique trophic pathways defined 
as “mycoloops”. It has been shown that parasitic fungi (e.g., chytrids) 
infecting phytoplankton transfer nitrogen obtained from host diatoms to 
their spores, and the consumption of these spores by zooplankton results 
in approximately 14% daily nitrogen transfer. This process, which 
reduces the carbon/nitrogen ratio across trophic levels, contributes to 
the creation of a higher-quality food source for zooplankton (Sánchez 
Barranco et al., 2020). The Mycoloop mechanism enables the return of 
elements, normally locked in large and inedible phytoplankton cells, to 
zooplankton and higher trophic levels. In this way, fungi play a central 
role in the functioning of aquatic food webs by regulating the distribution 
of elements and energy flow between the water column and sediment 
(Sánchez Barranco et al., 2020). When evaluated in terms of toxic 
elements, fungi are known to be able to concentrate various elements in 
their tissues, including trace metals (such as Cu, Ni, Cd, Zn). However, 
it has been reported that these metals do not exhibit a generalized and 
obligatory biomagnetism pattern in multitrophic terrestrial ecosystems; 
rather, transfers are species- and element-specific. This indicates that 
fungal-derived element accumulation has a more complex and context-
dependent dynamic within the ecosystem context (Tibbett et al., 2021; 
Uygun et al., 2025). However, under certain conditions, particularly 
in contaminated areas or when pathogenic fungi are transported by 
vectors such as microplastics, the transfer of toxic elements and other 
harmful components to higher trophic levels can increase the risk of 
secondary toxicity and disease at the local level. Therefore, fungal 
element accumulation and trophic transfer are processes that need to be 
carefully considered in terms of ecosystem health and environmental 
risk assessments (Gkoutselis et al., 2021; Tibbett et al., 2021).
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Mushrooms as Silent Controllers of Matter and Energy Cycles

The sustainability of ecosystems depends on the balanced and 
uninterrupted circulation of matter and energy between biotic and abiotic 
components. Fungi, which are central to these cycles, play a critical role, 
particularly in the transformation and re-bioavailability of organic matter. 
Through their heterotrophic feeding strategies, fungi decompose dead plant 
and animal tissues, converting complex biopolymers into simpler compounds, 
thereby releasing nutrients and facilitating the transfer of energy to different 
trophic levels within the ecosystem. In this respect, fungi are considered 
among the fundamental biological regulators that determine the speed and 
direction of ecosystem metabolism (Wilhelm et al., 2019; Meng et al., 2022; Li 
and Dong, 2025; Vieira et al., 2025). The ability of fungi to break down resistant 
plant compounds such as lignin, cellulose, and hemicellulose makes them 
indispensable actors in the global carbon cycle. In particular, while lignin, due 
to its chemical structure, can only be degraded to a limited extent by most 
bacteria, white rot fungi can effectively break down this polymer through 
powerful oxidative enzyme systems. Enzymes such as lignin peroxidase, 
manganese peroxidase, and laccase, produced by species like Phanerochaete 
chrysosporium, directly contribute to the reintroduction of carbon stored in 
plant residues back into the biosphere cycle by facilitating the mineralization 
of lignin-derived aromatic compounds (Miyauchi et al., 2017; Wilhelm et al., 
2019; Kato et al., 2024; Vieira et al., 2025). The degradation of cellulose and 
hemicellulose is also largely carried out by ascomycete and basidiomycete fungi, 
which play a key role in the microbial degradation of lignocellulosic structures 
using a broad repertoire of CAZyme such as hydrolases and oxidoreductases. 
Studies in terrestrial forest soils and compost systems reveal that the rate of 
lignocellulose degradation is strongly dependent not only on fungal abundance 
but also on the structure of fungal-bacterial interaction networks and the 
presence of low-abundance but functionally critical “keystone” taxa (Miyauchi 
et al., 2017; Wilhelm et al., 2019; Meng et al., 2022; Datta, 2024; Deep et al., 2025; 
Vieira et al., 2025). This indicates that degradation processes occur through a 
multi-actor and network-based dynamic. The role of fungi in the carbon cycle 
is not limited to terrestrial systems but also shows significant effects in marine 
ecosystems. It has been reported that macroalgal endophytic fungi contribute 
to the breakdown of cellulose and, to some extent, lignin under both oxic and 
anoxic conditions, thereby directly affecting the marine carbon cycle (Perkins 
et al., 2021; Lankiewicz et al., 2023; Lankiewicz et al., 2025). These findings 
indicate that the functions of fungi in carbon mineralization and organic 
matter transformation should be considered on an inter-ecosystem scale.

In addition to the carbon cycle, fungi also play crucial roles in the 
nitrogen and phosphorus cycles. Ectomycorrhizal and arbuscular mycorrhizal 
fungi support both individual plant performance and primary productivity 
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at the ecosystem scale by increasing nitrogen and phosphorus uptake by 
plants. The main mechanisms of this contribution include the enzymatic 
uptake of organic nitrogen and the increased solubility of phosphorus through 
the secretion of organic acids and phosphatases (Zak et al., 2019; Liu et al., 
2020; Mei et al., 2024; Shukla et al., 2025). In parallel, these fungal groups 
also indirectly regulate the storage and stability of soil organic carbon (Zak 
et al., 2019; Ma et al., 2025; Shukla et al., 2025). The average C:N:P ratio of 
fungal biomass being approximately 250:16:1 indicates that fungi carry a 
strong stoichiometric signal on soil nutrient limitation and decomposition 
rates. This unique stoichiometric structure plays a critical role in determining 
which nutrient element will be limiting in fungal decomposition processes 
(Gulis et al., 2017; Zhang and Elser, 2017; Pánek et al., 2024; Uygun et al., 
2025). Similarly, it has been reported that fungal communities developing 
on leaf litter in aquatic ecosystems immobilize and store phosphorus in 
particular thanks to their relatively stable C:N ratios, thereby shaping nutrient 
flow and the structure of food webs (Gulis et al., 2017; Deep et al., 2025; Li 
and Dong, 2025). When ecosystem functioning is evaluated in the context of 
climate change, mycorrhizal fungi are identified as “hidden decomposers” that 
control soil organic matter cycling, CO₂ emissions, plant productivity, and the 
carbon sink capacity of forest ecosystems. Nitrogen accumulation and climatic 
variables alter the structure, abundance, and enzyme production profiles of 
AM and EcM communities, reorganizing decomposition rates and carbon 
storage dynamics (Zak et al., 2019; Han et al., 2020; Mei et al., 2024; Ma et al., 
2025). Therefore, a decrease in fungal diversity or the loss of specific functional 
guilds can lead to slower lignocellulose decomposition, accumulation of 
organic matter, and serious bottlenecks in nutrient cycling (Wilhelm et al., 
2019; Meng et al., 2022; Li and Dong, 2025; Vieira et al., 2025).

The Structural Effect of Fungi in the Construction of Earth Architecture

Soil is not merely a passive medium formed by the aggregation of mineral 
particles; it is a dynamic and living system constantly reshaped by biological 
processes. Although the role of fungi in the formation of the physical and 
chemical properties of this system has long been considered secondary, 
mycelial networks stand out as one of the fundamental structures ensuring 
the functional integrity of soil. These networks, composed of long, thin, and 
branched hyphae, bind soil particles together, promoting aggregate formation 
and directly influencing the spatial organization of soil structure (Tisdall, 
1994; Lehmann et al., 2020; Wei et al., 2024; de Goede et al., 2025). Specifically, 
arbuscular mycorrhizal (AM) fungi significantly increase the formation and 
binding energy of water-resistant macroaggregates through their hyphal 
networks and the glomalin-like proteins they secrete. Studies have shown 
that this effect persists even under drought conditions, and that hyphal length 
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and glomalin content are among the critical variables explaining aggregate 
stability (Yang et al., 2017; Ji et al., 2019; Cheng et al., 2021; Ji et al., 2024). 
These findings reveal that fungal-derived biomolecules play a central role in 
the stability of soil structure. The contribution of filamentous fungi to soil 
architecture occurs not only through biochemical but also through physical 
mechanisms. The physical enveloping and binding of soil particles by hyphae, 
and the secretion of external polymers such as polysaccharides, glycoproteins, 
and hydrophobics, make the fungi essentially producers of “biological cement.” 
Experimental studies conducted with numerous isolates have revealed 
that increases in hyphae biomass and density are positively correlated with 
aggregate formation and stability (Lehmann et al., 2020; Angulo et al., 2024; 
Wei et al., 2024; de Goede et al., 2025). These aggregate structures formed by 
fungi not only increase the mechanical strength of the soil but also significantly 
affect its water-holding capacity and pore structure. Aggregates formed with 
the contribution of glomaline and hydrophobic components regulate the 
soil’s water potential, allowing moisture to be retained for longer periods, and 
simultaneously improve gas exchange and hydraulic conductivity through 
the reorganization of pore connections. These processes directly contribute 
to reducing the risk of erosion and increasing soil functionality (Yang et al., 
2017; Ji et al., 2019; Cheng et al., 2021; Ji et al., 2024; Liu et al., 2024; Yu et al., 
2024; Wei et al., 2024; de Goede et al., 2025). When evaluated at the soil-plant 
interface, the role of mycorrhizal fungi becomes even more prominent. AM 
fungi, thanks to their extra-root hyphal networks, increase the uptake of water, 
especially phosphorus, nitrogen, and potassium, by plants; increases of up to 
approximately 50% in plant biomass and root volume have been reported under 
drought conditions. In parallel, root architecture and hormone balance change 
in mycorrhizal plants, and drought tolerance is strengthened by the expansion 
of root surface area (Yaşar et al., 2009; Cheng et al., 2021; Chandrasekaran, 
2022; Wang et al., 2023; Liu et al., 2024). The effects of fungal activity on soil 
architecture also have significant implications for microbial ecology. Mycelial 
networks and fungal aggregates create microhabitats for bacteria and other 
microorganisms, allowing for increased soil microbial diversity. It has been 
reported that bacterial-fungal interaction networks are more complex and 
dense, particularly in large and stable aggregates, and that these structures 
simultaneously support multiple nutrient cycles. This clearly demonstrates 
that fungi play a central regulatory role in maintaining both the structural and 
functional integrity of soil (Wagg et al., 2019; Lehmann et al., 2020; Liao et al., 
2020; de Goede et al., 2025).

The Regulatory Power of Fungi in Interactive Networks of Organisms

Ecosystems are built upon multi-layered and dynamic networks of 
interactions between different groups of living organisms. Fungi, at the center 
of these networks, determine the direction and strength of biotic relationships 
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through both direct and indirect mechanisms. Their symbiotic relationships 
with plants provide mutual benefit in terms of nutrient sharing and tolerance 
to environmental stresses, while pathogenic interactions constitute an 
effective control mechanism in limiting population sizes and regulating 
species composition. The simultaneous existence of these opposing forms of 
interaction makes fungi key actors in shaping ecosystem balance. Mycorrhizal 
fungi increase the uptake of essential nutrients, primarily phosphorus and 
nitrogen, from plant roots in exchange for carbon, while also improving water 
supply and stress tolerance. This reciprocal interaction directly affects not only 
individual plant performance but also the structure of plant communities 
and the symbiotic strategies of species. The transmission of nutrient and 
chemical signals between plants through mycorrhizal networks facilitates 
seedling establishment and contributes to balancing interspecies competition 
by supporting niche differentiation in the soil. In contrast, plant pathogenic 
fungi can lead to significant structural changes in ecosystems. Suppression or 
elimination of key plant species through infection can result in a decrease in 
plant diversity and chain reactions of disruptions in trophic networks. This 
demonstrates that fungi reshape the composition of plant communities through 
their pathogenic roles and indirectly affect ecosystem stability. Therefore, the 
balance between mutualistic and pathogenic interactions of fungi is considered 
a fundamental element in determining the long-term stability of ecosystems 
(Tedersoo et al., 2020; Mishra et al., 2024).

The regulatory effects of fungi are not limited to plant communities but 
also extend to fundamental ecosystem processes such as nutrient cycling, 
carbon sequestration, and water balance. Changes in competition and 
decomposition rates between different mycorrhizal types can increase or 
decrease the amount of carbon stored in the soil. Simultaneously, fungal-
induced interactions contribute to the reorganization of community structures 
by altering the ecological niches and competitive strengths of plant species 
(Sağlıker and Darıcı 2007; Tedersoo et al., 2020; Bahram and Netherway, 2022; 
Mishra et al., 2024; Wang and Kuzyakov, 2024). In this respect, fungi stand 
out as functional regulators influencing ecosystem processes at multiple scales. 
Fungal-bacterial interactions also constitute a fundamental component of 
ecosystem functioning. These interactions occur in almost all habitats across 
a wide spectrum ranging from mutualism to intense competition, affecting 
numerous processes from biochemical cycles and soil fertility to plant and 
animal health and disease suppression. Particularly in soil and rhizosphere 
environments, bacteria gain an advantage in simpler carbon sources, while 
fungi excel in the decomposition of complex organic matter; this competition 
determines decomposition rates and the direction of nutrient cycling (Deveau 
et al., 2018; Wagg et al., 2019; Zhou et al., 2022; Wang and Kuzyakov, 2024). 
The chemical dimension of these interactions is constituted by the secondary 
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metabolites produced by both groups. Compounds such as antibiotics, toxins, 
and signaling molecules reshape the structure of microbial communities by 
regulating competition and communication between microorganisms. These 
metabolites produced by fungi lead to the suppression or promotion of specific 
bacterial groups, enabling the enrichment of bacterial taxa that support plant 
growth or suppress pathogens. Thus, fungal-bacterial interactions play a central 
role in the continuity of ecosystem functions and the maintenance of biotic 
balance (Netzker et al., 2015; Wagg et al., 2019; Alam et al., 2021; Bahram and 
Netherway, 2022; Elhamouly et al., 2022; Lapiere and Richard, 2022; Berrios et 
al., 2024; Wang and Kuzyakov, 2024).

Fungus-Based Mechanisms in Ecosystem Resilience and Stress 
Adaptation

Natural ecosystems function under the simultaneous pressure of multiple 
stressors such as climate change, environmental pollution, and habitat loss. The 
resilience of ecosystems to these stresses depends not only on the preservation 
of species numbers but also on the maintenance of functional diversity and 
resilience. In this context, fungi are among the essential biotic components 
that enhance the adaptation capacity of ecosystems to environmental changes; 
they contribute to the overall resilience of the system both through direct 
physiological mechanisms and through their interactions with other groups 
of organisms (Cheng et al., 2021; Liu et al., 2022; Madouh and Quoreshi, 
2023; Sağlıker et al., 2025). Many fungal species possess the ability to develop 
exceptional tolerance to heavy metals, pesticides, and various toxic compounds. 
This tolerance is based on multiple cellular mechanisms such as the binding 
of metal ions in the cell wall, biosorption and bioaccumulation processes, 
reduction or transformation of metal ions, vacuole or cell wall sequestration, 
and active outpumping. These physiological strategies not only enable fungi to 
survive under stressful conditions but also allow them to assume a protective 
function at the ecosystem level by reducing the bioavailability of toxic 
compounds in the environment (Priyadarshini et al., 2021; Robinson et al., 
2021). In particular, some endophytic fungal species can significantly increase 
the production of metallothioneins, glutathione, melanin, and antioxidant 
enzymes under heavy metal stress, converting metals into less toxic organic 
forms. These biochemical responses both prevent damage to fungal tissues and 
reduce the impact of metal stress on host plants. These characteristics reveal 
that fungi are of strategic importance to ecosystems not only in terms of stress 
tolerance but also in terms of their bioremediation potential (Priyadarshini et 
al., 2021; Robinson et al., 2021; You et al., 2025).

The contributions of fungi to ecosystem resilience are not limited to 
heavy metal tolerance but are also clearly evident under abiotic stresses 
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such as drought and salinity. Under drought conditions, the development 
of extraradical hyphal networks, the regulation of aquaporins, and the 
accumulation of osmoprotectants, thereby increasing water uptake and water 
use efficiency, are among the main mechanisms by which fungi support plant 
production. Similarly, under salinity stress, the regulation of the potassium/
sodium ratio and the retention of toxic ions in the root zone demonstrate the 
plant physiology-balancing effect of fungi (Sağlıker and Darıcı, 2005; Bahadur 
et al., 2019; Begum et al., 2019; Diagne et al., 2020; Cheng et al., 2021; Sharma 
et al., 2021; Liu et al., 2023). Plant-fungal symbioses, particularly through 
arbuscular mycorrhizal fungi (AMFs), play a central role in the development of 
resilience at the ecosystem scale. AMFs establish symbiotic relationships with 
a large proportion of terrestrial plants, increasing the uptake of phosphorus, 
nitrogen, water, and micronutrients; thereby improving plant growth and 
physiological performance under both normal and stressful environmental 
conditions. Strengthening antioxidant defense systems, osmotic regulation, 
maintaining phytohormone balance, and regulating gene expression are 
fundamental processes in the face of drought, salinity, temperature extremes, 
and heavy metal stress (Bahadur et al., 2019; Begum et al., 2019; Diagne et 
al., 2020; Cheng et al., 2021; Sharma et al., 2021; Wahab et al., 2023; Nie et 
al., 2024; Radi et al., 2025). When evaluated at the ecosystem scale, systems 
with high species diversity of arbuscular mycorrhizal fungi and other root 
endophytes are found to be more resilient to environmental stresses and have 
a stronger post-stress recovery capacity. Maintaining plant productivity during 
drought periods and rapid recovery after drought clearly demonstrates the 
ecosystem-stability-enhancing effect of fungal diversity. Global analyses show 
that the richness of saprophytic and mycorrhizal fungi, in particular, strongly 
supports the temporal stability and drought resistance of plant production 
(Cheng et al., 2021; Liu et al., 2022; Madouh and Quoreshi, 2023). Similar 
trends are observed in aquatic ecosystems. In freshwater systems, a decrease 
in fungal species richness weakens the rate of organic matter decomposition 
and biomass accumulation, while high fungal diversity enables these processes 
to continue even under environmental stress conditions. These findings reveal 
that fungi not only adapt to current environmental conditions but also play 
a decisive role in preparing ecosystems for future uncertainties (Graca et al., 
2024).

From Natural Ecosystems to a Sustainable Future: The Ecological 
Services of Mushrooms

The roles of fungi in ecosystems are not limited to natural biochemical 
processes but also encompass numerous ecological services vital to human 
societies. These services include the decomposition of organic waste, the 
biological remediation of polluted soil and water environments, and the 
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maintenance of nutrient cycles. Saprotrophic fungi, in particular, are almost the 
only group of organisms capable of breaking down lignocellulosic structures, 
converting dead plant and animal tissues into minerals and CO₂, thus forming 
the basis of soil fertility and ecosystem productivity (Heilmann-Clausen et al., 
2015; Treseder and Lennon, 2015; Zanne et al., 2020). In soil ecosystems, fungi 
play key roles in nitrogen, phosphorus, and carbon cycles, contributing to the 
maintenance of soil health and the sustainment of climate regulatory services. 
Strengthening soil aggregation, promoting organic matter accumulation, and 
long-term carbon sequestration are direct outcomes of fungal activity. These 
processes not only improve soil structure but also regulate greenhouse gas 
emissions and buffer ecosystems against climate change (Treseder and Lennon, 
2015; Větrovský et al., 2020; Adnan et al., 2022; Akter et al., 2025). Mycorrhizal 
fungal-plant symbioses constitute one of the most common and effective 
examples of ecosystem services provided by fungi. Currently, more than 250,000 
plant species are known to have symbiotic relationships with mycorrhizal 
fungi; these associations significantly improve growth, stress tolerance, and 
survival success by increasing water and nutrient uptake by plants. It has 
been shown that these symbioses maintain plant productivity and strengthen 
sustainability in agricultural and forestry systems under environmental stress 
conditions such as drought and salinity (Powell and Rillig, 2018; Adnan et al., 
2022; Martin and van Der Heijden, 2024). The ecosystem services of fungi are 
not limited to terrestrial systems; they also play significant and indispensable 
roles in freshwater ecosystems. Aquatic fungi maintain nutrient cycles through 
leaf decay and organic matter decomposition, transferring energy flow to 
higher trophic levels and supporting the functioning of aquatic food webs. 
These processes also enhance the natural “self-cleaning capacity” of water, 
contributing to the preservation of water quality and the continuity of clean 
water ecosystem services (Seena et al., 2023; Graca et al., 2024). The ecosystem 
services offered by fungi are becoming increasingly important for human-
centered bioeconomic applications. Fungus-based technologies are becoming 
widespread in areas such as food production, drug development, biofuel and 
biomaterial (e.g. myco-leather and biocomposites) production. In addition, 
the strong enzymatic and metabolic capacity of fungi offers high potential 
for the bioremediation of contaminated soil and water environments and is 
becoming a fundamental component of nature-based solution approaches 
(Zanne et al., 2020; Seena et al., 2023; Akter et al., 2025; Case et al., 2025). 
The relationship between fungal diversity and ecosystem functions stands 
out as a decisive factor for the long-term stability of ecosystems. In systems 
with high richness in decomposer and mycorrhizal fungi, it has been shown 
that multiple ecosystem functions are simultaneously strengthened and plant 
biomass increases. This reveals that fungal diversity provides a fundamental 
biological infrastructure supporting ecosystem multifunctionality (Treseder 
and Lennon, 2015; Powell and Rillig, 2018; Liu et al., 2022; Runnel et al., 2025). 
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Furthermore, fungal diversity plays a critical role in maintaining ecosystem 
resilience to climate extremes. Specifically, ecosystems with high decomposer 
fungal richness have been reported to exhibit more stable plant productivity 
and faster ecosystem recovery during periods of drought. These findings 
demonstrate that fungi are key organisms supporting ecosystem stability under 
climate change conditions (Liu et al., 2022; Akter et al., 2025). Conversely, 
disruptions and biodiversity losses in fungal communities pose a serious threat 
to essential ecosystem services such as food security, soil health, and climate 
regulation. Declining fungal biodiversity can lead to slowed decomposition 
processes, disruptions in nutrient cycling, and increased vulnerability of 
ecosystems to environmental stressors (Heilmann-Clausen et al., 2015; Frac 
et al., 2018; Fang et al., 2023; Akter et al., 2025). Therefore, fungi should be 
considered not only as “complementary” elements of ecosystems, but also as 
habitat providers, indicators of ecosystem processes, and strategic tools for 
nature-based solutions. The systematic integration of fungi into conservation 
biology and sustainable environmental management approaches emerges as a 
critical requirement for the preservation of ecosystem functioning (Heilmann-
Clausen et al., 2015; Fang et al., 2023).

Global databases and functional feature-based approaches developed in 
recent years make it possible to correlate fungal diversity with environmental 
responses and ecosystem services. Such holistic research frameworks contribute 
to a deeper understanding of fungal ecology and enable the effective use of 
fungal-based biological infrastructure for a sustainable future (Prieto et al., 
2019; Větrovský et al., 2020; Zanne et al., 2020; Bahram and Netherway, 2022).
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