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Chapter 1: 
FOUNDATIONS OF PHYSICAL AI

Physical AI refers to the integration of AI systems into robotic platforms 
or tangible entities (such as physical objects) in a way that enables meaningful 
interactions with the physical world. The primary goal of Physical AI is 
not merely to employ intelligence in abstract computational processes, 
but also to ensure its direct engagement with the physical environment. 
Therefore, Physical AI differs from traditional AI applications: rather than 
limiting itself to analyzing and making inferences solely from datasets in 
virtual environments, it can also analyze data acquired from the physical 
world and transfer its outputs back into that environment. Through this 
characteristic, “Physical AI” sits at the intersection of multiple disciplines, 
including machine learning, robotics, mechatronics, biomimetics, 
materials science, computer science, and mechanical engineering. For 
instance, whereas traditional AI would analyze an image as purely digital 
data, a robot equipped with Physical AI can sense objects by touch, move 
them, navigate in a real room, interact with humans in the same physical 
space, and perceive and adapt to its environment through sensor feedback. 
In this manner, Physical AI equips robots with sensory and motor skills 
simultaneously, allowing them to perform versatile, human-like functions 
(Costeira & Lima, 2020).

Physical AI advances the development of both robotic systems and AI 
algorithms, enabling these systems to acquire much more complex, flexible, 
and human-like capabilities. On the one hand, it facilitates the ability of 
robotic arms, autonomous vehicles, and service robots to make decisions, 
adapt, and learn in response to changing environmental conditions. On 
the other hand, by processing sensor data, it drives forward the progress of 
AI models that interact with that data. The decision-making mechanisms 
of Physical AI may rely on raw data received from physical sensors, 
formulating motion plans based on that information. Furthermore, it can 
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optimize its actions over time by drawing lessons from errors, thereby 
responding to the demands of dynamic environments.

It should be noted that Physical AI is not limited exclusively to digital 
or robotic systems; rather, there may be various types of systems in which 
Physical AI can be found, reflecting a wide range of possibilities. One such 
dimension involves bio-integration and the design of soft robotics and 
biohybrid systems inspired by the functioning of living organisms. The 
goal of these systems is to integrate one or more characteristics found in 
nature—such as adaptation, flexibility, energy efficiency, and resilience—
into artificial systems, thereby creating more advanced examples of Physical 
AI. For instance, by replicating an octopus’s flexible limbs in an artificial 
form, robots can benefit from this flexibility to pass through narrow spaces 
and move across irregular surfaces. Similarly, sensor systems inspired by 
living cells or biological tissues can grant AI a more natural and efficient 
environmental awareness (PgCert, 2024).

Physical AI opens new horizons in the field of Human-Robot 
Interaction (HRI). Currently, interaction with robots largely involves issuing 
commands and relying on predefined action sequences. With Physical AI, 
humanoid robots can respond to emotional expressions, body language, 
gestures, and changes in their surroundings, thereby rendering human-like 
interactions more natural and fluid. This has significant implications in 
caregiving, therapy, education, production line management, logistics, and 
many other fields—enabling humanoid robots to be employed in diverse 
scenarios while increasing their effectiveness and ability to address various 
needs (Universal Robots, 2019).

Moreover, beyond direct human interaction, Physical AI can find 
practical applications in numerous other sectors that affect human life, 
ranging from industrial manufacturing and autonomous agriculture 
to smart home systems and medical applications. For instance, on an 
industrial production line, a humanoid robot driven by Physical AI can 
perceive products in real time and dynamically integrate itself into the 
manufacturing process in place of a human operator, effectively managing 
that process (Automation.com, 2024). An agricultural robot could detect 
soil moisture, ambient temperature, and the presence of harmful insects, 
autonomously improving plant care and harvesting processes. In hospitals, 
surgical robots could process real-time feedback to perform delicate 
operations on tissues with high accuracy.

Naturally, there remain challenging issues to be resolved regarding 
Physical AI. These include cost, energy efficiency, durability, material 
quality, sensor sensitivity, precise motion control, data processing capacity, 
the continual development and optimization of AI models, and safety 
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considerations. Additionally, the ethical and social dimensions of Physical 
AI are of paramount importance. Questions arise about the degree of 
autonomy these systems should have in their interactions with humans, 
the ethical norms to which they should be subject, and how their safe and 
beneficial usage for humanity can be ensured.

In conclusion, “Physical AI” denotes an interdisciplinary domain 
aimed at drawing AI out of an abstract layer and integrating it into real-
world physical systems, robotic structures, and objects. This approach 
allows robots and other Physical AI systems to perceive, learn, adapt to, 
and interact more naturally with their surroundings. It is anticipated that, 
in the future, more flexible, capable, responsive, and resilient Physical AI 
systems will enable far-reaching transformations in social, industrial, and 
scientific fields.

The conceptual roots of intelligence reach back to philosophical 
investigations seeking to understand the human mind. In ancient Greek 
philosophy, particularly in the work of Aristotle, the effort to classify logical 
inference rules prompted a formal examination of “intelligence.” Aristotle 
developed the foundational principles of logic to provide a coherent 
framework for reasoning processes. His theory of “categories” classifies 
types of being and thereby organizes the objects of thought at a conceptual 
level. This approach is directly related to the mind’s capacity—what we call 
“reason”—to abstract and categorize. Aristotle’s development of syllogistic 
methods provides the mind with a systematic model for the pursuit of 
truth, thus clarifying the functional scope of “reason.”

According to Aristotle, the roots of knowledge begin with sensory 
perception; however, the generalizations obtained through induction from 
pure sense data rise to a conceptual level once the intellect is involved. This 
process positions human “intelligence” not only as dependent on sensory 
data but also as capable of drawing meaning from abstract concepts and 
generating principles. In this sense, intelligence functions at a higher 
mental level, molding raw data and deriving principles, definitions, and 
cause-effect relationships from it.

In Aristotle’s work De Anima, the mind is regarded as the highest 
faculty among the various layers of the soul found in living beings. Beyond 
vegetative and animal faculties, the intellect and intelligence unique to 
humans possess the power of abstract thinking and self-reflection. Here, 
the concept of entelecheia signifies the actualization and full operation of 
latent mental faculties, suggesting that intellect and intelligence are not 
passive receivers but faculties that develop, mature, and become active. 

For Aristotle, the highest form of knowledge is sought in discovering 
the ultimate causes and principles of being. This endeavor calls upon the 
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mind’s power of abstraction and intelligence’s capacity to grasp fundamental 
principles. From this standpoint, mind and intelligence are not merely 
technical tools but also instruments of a metaphysical inclination that seeks 
to uncover the nature of reality (Wikipedia, 2024).

At the foundation of artificial intelligence lies an interdisciplinary 
approach aimed at embedding certain aspects of human intelligence into 
machines. In the 20th century, the convergence of mathematics, logic, 
and cognitive sciences gave rise to the foundations of AI. The logic- and 
mathematics-based formalizations of philosopher-mathematicians such 
as Bertrand Russell and Alfred North Whitehead, along with Alonzo 
Church and Alan Turing’s work on computability theory, provided a robust 
theoretical groundwork for AI (Mgmus, 2021). Turing’s computability 
theory and his concept of the “Turing Machine”, in particular, paved the 
way for defining machines capable of algorithmic computation, thereby 
delineating the theoretical boundaries of the AI discipline.

Pioneers—including John McCarthy, Marvin Minsky, Allen Newell, 
and Herbert Simon—developed symbolic AI (often referred to as “Good 
Old-Fashioned AI” or GOFAI), in which mental processes were modeled 
through symbols, logical rules, and formal languages (Petracca, 2021). These 
concepts enabled a structured examination of knowledge representation, 
symbolic logic, inductive and deductive reasoning, rule-based inference, 
expert systems, and problem-solving strategies under the umbrella of AI.

Nevertheless, the inadequacies of purely rule-based symbolic systems 
in handling uncertain, noisy, or incomplete information encouraged the 
adoption of statistical methods and probabilistic modeling approaches. 
In this context, probability theory, Bayes’ theorem, Markov chains, and 
probabilistic graphical models (including Bayesian networks and Markov 
random fields) have enabled AI applications to make decisions, predictions, 
and inferences in uncertain environments (Almabetter, 2024). Statistical 
learning theory provides the theoretical framework necessary to analyze 
the general performance of data-driven models, assess their generalization 
capabilities, and formalize learning algorithms.

Within machine learning, and deep learning in particular, linear 
algebra (such as matrix multiplications, eigenvalues, and eigenvectors) 
and optimization techniques (such as gradient descent, stochastic gradient 
descent, and Newton or quasi-Newton methods) are crucial for parameter 
learning in high-dimensional data spaces and for minimizing loss functions 
(h2o.ai, 2024). These mathematical tools serve as the building blocks for the 
development of efficient learning algorithms.

In addition to logic, mathematics, and statistics, cognitive science and 
neuroscience have also played decisive roles in the theoretical evolution 
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of AI. Research in cognitive psychology, which investigates perception, 
attention, memory, problem-solving, and language processing, has offered 
models that have inspired AI algorithms. This understanding of the nature 
of intelligence underpins both symbolic and connectionist approaches in 
system design.

Neuroscience stands at the forefront in establishing the conceptual 
foundations of artificial neural networks. The McCulloch-Pitts neuron 
model, a simplified abstraction of biological neurons employing parallel and 
distributed information processing, was among the earliest contributions 
to AI (He, Yang, He, & Zhao, 2021). This model laid the historical 
groundwork for the multi-layer neural networks we now call deep learning. 
Modern deep learning architectures—enhanced by advanced optimization 
methods, regularization techniques, and complex layer structures—have 
built upon that basic model to achieve near-human performance in tasks 
such as perception, recognition, classification, and prediction, particularly 
when large datasets are available.

In the realm of “Physical AI,” synthetic data generation, learning, 
optimization, and modeling play significant roles in everything from 
design and prototyping to predicting the behavior of physical systems 
(Nvidia, 2024). At this point, Generative Adversarial Networks (GANs) 
and Variational Autoencoders (VAEs)—collectively known as “Generative 
Models”—assume a critical function (Belcic, 2024). By learning complex 
data distributions, these models can produce new, realistic, and creative 
data outputs. This capability provides a powerful infrastructure for both 
virtual simulations and predictions regarding physical systems.

The primary objective of Generative Models is to learn the probability 
distribution of a particular dataset and then generate new examples that 
share similar statistical properties. For instance, a model may generate 
realistic images, audio signals, or robot movement patterns. Such models 
facilitate the acquisition of high-dimensional and complex data for Physical 
AI.

Among the types of generative models are VAEs (Variational 
Autoencoders), which compress high-dimensional inputs into a lower-
dimensional space, producing latent representations that preserve the 
meaningful information contained in the original data. Through dimension 
reduction, this process retains the significant content of the data. These 
latent space representations enable the statistical capture, manipulation, 
and variability of data space. 

In the context of machine learning, “mathematical dimensions” do not 
necessarily correspond to conventional spatial dimensions of the physical 
world; rather, they reflect the features of data. For instance, an image of a 
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handwritten digit in the MNIST dataset, sized at 28 × 28 pixels in grayscale, 
can be represented as a 784-dimensional vector, where each pixel is 
assigned a value between 0 (black) and 1 (white). If the same image were in 
color, each pixel would comprise three dimensions (red, green, and blue, or 
RGB), resulting in a total of 2,352 dimensions.

However, not all such dimensions carry meaningful information. 
Although the digit itself occupies only a small portion of the image, a 
substantial portion of the input space may be merely background noise. 
Consequently, compressing data to contain only salient information—
in other words, creating a latent space—can substantially enhance the 
accuracy, efficiency, and efficacy of many machine learning tasks. Figure 
1 below illustrates the architecture of an autoencoder neural network 
(Bergmann & Stryker, 2024).

Figure 1. Architecture of an autoencoder neural network

The “VAE” model is an Autoencoder architecture composed of 
“Encoder” and “Decoder” components. The key distinction lies in the 
“Variational Inference” approach (Refaeli, 2023). Typically, the Encoder 
employs a Neural Network to produce a latent distribution characterized by 
mean and variance parameters derived from the input data, which is then 
mapped to a probability distribution (commonly a normal distribution). 
The Decoder, in turn, attempts to reconstruct the data space from latent 
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vectors sampled from this latent space. A major advantage of VAEs is their 
ability to capture the underlying structural features of the data by modeling 
a continuous latent space. Since the “Generative” process is probabilistic, it 
allows for more diverse data generation. Moreover, it is possible to perform 
meaningful arithmetic operations in the latent space (e.g., interpolation 
between two face images).

On the other hand, the “GANs” model consists of two neural networks 
trained adversarially against each other, known as the “Generator” and the 
“Discriminator” (Google for Developers, 2022). This approach operates 
according to game theory principles (the minimax algorithm) (Suginoo, 
2024). The Generator typically processes random noise vectors through 
a series of layers to produce meaningful data, while the Discriminator 
acts like a Binary Classifier, distinguishing between real data and the fake 
data generated by the Generator. During training, the Generator learns to 
produce increasingly realistic data that can fool the Discriminator. Training 
is performed via Gradient Descent–based methods: the Generator refines 
its output based on feedback from the Discriminator. By the end of training, 
the Generator is capable of producing high-quality, realistic synthetic 
samples resembling the true data distribution. GANs can thus generate 
highly realistic images, videos, sounds, and complex data spaces. They 
are particularly successful at producing high-resolution data, generally 
yielding sharp results because the generative process is optimized through 
adversarial competition. For instance, GANs can augment real robot 
sensor data to facilitate more extensive learning or expand limited datasets 
obtained from laboratory experiments, helping researchers explore the 
design space more efficiently. 

In conclusion, “GANs” and “VAEs” represent two significant 
approaches within the family of “Generative Models.” VAEs leverage 
probabilistic modeling to capture the latent structure underlying the data, 
whereas GANs use adversarial learning to produce highly realistic samples. 
For Physical AI, both approaches offer a broad spectrum of applications, 
from modeling physical systems and expanding design spaces to simulating 
complex interactions and performing data augmentation.

Below is a table (Table 1) comparing the fundamental differences 
and similarities between Generative Adversarial Networks (GANs) 
and Variational Autoencoders (VAEs). Table 1 summarizes the general 
characteristics of both model families, their architectures, mathematical 
foundations, strengths and weaknesses, and typical areas of application.
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Table 1. Generative Adversarial Networks vs Variational Autoencoders

Feature / Key 
Differences

GANs (Generative Adversarial 
Networks)

VAEs (Variational Autoencoders)

Objective
To generate synthetic data that 
closely resembles real data

To learn a probabilistic representation 
of the data distribution and generate 
data from it

Architectural 
Structure

Two components: the Generator 
(producing synthetic data from 
noise) and the Discriminator 
(distinguishing real from fake)

A single encoder-decoder structure: 
the Encoder compresses the data 
into a latent space, and the Decoder 
reconstructs data from the latent 
vector

Learning 
Method

A minimax game: the Generator 
and Discriminator learn in mutual 
competition

Variational Bayesian approach: 
maximizing the Evidence Lower 
Bound (ELBO)

Mathematical 
Foundation

Game theory, based on the Jensen–
Shannon divergence or a similar 
measure

Variational inference, minimizing the 
Kullback–Leibler (KL) divergence

Quality of 
Generated 
Data

Typically produces sharper, more 
realistic, and highly detailed images

Tends to produce smoother, 
sometimes blurrier outputs, but 
generally exhibits good diversity

Mode Collapse
Susceptible to mode collapse, 
potentially ignoring certain modes 
in the data

Less prone to mode collapse, 
better reflects diversity in the data 
distribution

Latent Space 
Representation

Does not provide an explicit latent 
space, the learned distribution is 
indirect

Offers a meaningful latent space, 
arithmetic can be performed on the 
latent vectors, and transitions are 
smooth

Training 
Difficulty

Training can be challenging, 
requiring precise hyperparameter 
tuning; unstable optimization is 
common

Generally more stable training, 
converges more easily when well-
tuned

Applications
High-quality image generation (e.g., 
faces, synthetic photographs), style 
transfer, super-resolution

Understanding data distributions, 
data completion, anomaly detection, 
and variational modeling

Computational 
Cost

Often high, the Discriminator 
requires substantial data and 
computation to distinguish realistic 
fake samples

More controlled computational 
cost, ELBO optimization is direct, 
although complex density estimations 
may sometimes be required

Diversity of 
Outputs

Output diversity can be limited, 
especially in the case of mode 
collapse

Broad diversity, various examples can 
be easily generated from the latent 
space

Figure 2 presents a schematic representation of both VAEs and GANs (Singhal, 
2023).
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Figure 2. VAEs and GANs

In summary, even though both GANs and VAEs fall under the 
category of generative models, they employ different approaches in the data 
generation process. VAEs focus on modeling the underlying probability 
distribution of the data via an “Encoder–Decoder” system that learns a 
continuous latent space, while GANs use a “Generator–Discriminator” 
rivalry to produce highly realistic synthetic data. VAEs offer a more 
interpretable latent space representation, whereas GANs yield more realistic 
samples. This distinction enables both methods to serve complementary 
roles in multidimensional processes such as data augmentation, simulation, 
and design-space exploration within Physical AI applications.
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Chapter 2
ADVANCING PHYSICAL AI THROUGH 
MULTIDISCIPLINARY INTERACTIONS

Developing artificial intelligence systems in the physical environment 
requires a multidisciplinary approach. In a “Physical AI” system, the 
goal is for robots to exhibit capabilities not only in software but also in 
hardware. To achieve this goal, five fundamental disciplines—namely, 
Mechanical Engineering, Computer Science, Materials Science, Biology, 
and Chemistry—must work in an integrated manner, interacting with one 
another. The roles of these fields and their interactions in creating Physical 
AI vary. In Figure 3, one can see the foundational skills necessary to drive 
Physical AI innovation (Brogan, 2020).

Figure 3. The foundational skills necessary to drive Physical AI innovation.
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Mechanical Engineering is responsible for the kinetic and kinematic 
design of Physical AI systems. Robotics deals with the coordination of a 
robot’s physical actions through components such as manipulator design, 
motion mechanisms, servo motors, and control systems (Reach Robotics, 
2022). Articulated robotic arms or similar manipulators are driven by 
servo motors or stepper motors. The ability of these arms to perform 
precise positioning directly affects the robot’s repeatability and accuracy 
performance. 

Mechatronics focuses on the integrated design of mechanical, electronic, 
and control software (Babaiasl, 2022). It addresses sensors, actuators, and 
control circuitry of “Physical AI” robots as a whole. Mechatronic design 
enables Physical AI robots to make real-time decisions and take action. 

Manufacturing encompasses methods for mass production or 
specialized production of complex robotic systems. By combining 
prototyping methods (e.g., 3D printing) with mass production methods 
(e.g., injection molding and sheet metal processing), it is possible to achieve 
both rapid prototyping and scalable manufacturing (3ERP, 2024). 

Design involves the process of designing a robot’s mechanics, taking 
into account both ergonomics and functionality. In designing the points 
of physical contact between robots and their users or environments, 
both safety and ergonomics are of critical importance (e.g., human-robot 
interaction, HRI). 

In essence, Mechanical Engineering provides the fundamental 
infrastructure for physical movement and power transmission mechanisms 
in Physical AI. From a mechanical engineering perspective, “Physical AI” 
encompasses not only robotic arms and mobile platforms but also next-
generation “soft robotics” applications, physical human-robot collaboration 
known as cobots (Yasar, 2024), and multi-axis motion systems.

Computer Science represents the “intelligence” and “information 
processing” aspects of robots. Programming includes the necessary 
programming languages and methods to develop robotic behaviors, control 
loops, and interaction protocols. A wide range of software is developed, 
from low-level embedded software to high-level autonomous decision-
making algorithms, to manage a robot’s functions.

Machine Learning develops algorithms that self-optimize by learning 
from data (e.g., sensor data, images, and sounds) (IBM, 2024b). Physical 
AI robots can adapt to their environment and improve their performance 
as they learn new tasks. Machine learning is employed in processes such as 
extracting meaningful outputs from sensor data, making predictions, and 
establishing adaptive control mechanisms. Applications span computer 
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vision, natural language processing, and power optimization, among others.

Data Science provides the methods needed (e.g., data mining, statistical 
modeling) to store, process, and analyze large volumes of sensor and other 
data (IBM, 2024a). It addresses the need for real-time data processing, 
cloud-based analytics, and long-term storage for the significant volumes of 
data generated by robots or edge devices (Edge Computing).

Networking creates the infrastructure enabling Physical AI robots to 
communicate in real time with cloud computing resources or with one 
another. Technologies such as Wi-Fi, 5G, and low-latency network protocols 
exemplify the infrastructure supporting interactions between robots and 
cloud services or among robots themselves. This becomes especially critical 
in swarm robotics applications (Pham et al., 2021).

In summary, because it underpins “intelligent control” and “decision-
making” mechanisms, computer science can be viewed as the “brain” of 
Physical AI projects.

Biology enables the development of “biomimicry” and “bio-inspired” 
designs by modeling the functioning of living systems. Efficient energy 
use, high adaptability, and durability in natural organisms can guide 
advancements in robotics and materials science. Examples include gecko-
inspired climbing robots and octopus-like “soft” robotic arms (Sun, 
Bauman, Yu, & Zhao, 2023). In fact, a gecko-inspired robot can amputate 
its own limb to survive (Gunia, 2024). 

Physiology is essential for understanding processes such as circulation, 
respiration, and nerve conduction in living organisms, thereby guiding robots in 
efficient energy usage and autonomous vital functions. Biological mechanisms 
like respiration, circulation, and nerve conduction shed light on goals such as 
self-regulation (akin to homeostasis) and energy efficiency in robot design.

Tissue Engineering is important for producing biological tissues in 
artificial environments and integrating them into robotic systems (e.g., 
biological sensors and “soft robotics”). The concept of using hybrid systems 
with biological tissues or cell-based sensors is rapidly gaining significance, 
particularly in medical and rehabilitation robotics (e.g., prostheses 
integrated with living cells).

Biomechanics examines the mechanical principles of the 
musculoskeletal systems of living organisms for translation into robot 
designs, enabling the creation of robots with more effective and efficient 
movements. Understanding human musculoskeletal structures and the 
locomotion systems of animals provides key insights into joint design, the 
balance between flexible/rigid structures, force distribution, and efficient 
movement strategies.
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Phytology, especially in the realm of “plant-inspired” robotics, can 
help develop new robotic solutions by mimicking the growth, elongation, 
and environmental adaptation mechanisms of plants. Plant growth 
mechanisms, the transport of water and nutrients, and responses to light 
or gravity offer novel material and kinematic strategies for “plant-inspired” 
robotics.

In conclusion, biology facilitates the development of nature-inspired 
designs in Physical AI and even the integration of certain living components 
into robots. Biological approaches can be extended to the idea of using 
“biological modules” in Physical AI robots (e.g., bacteria-based sensors, 
algae-based energy production).

Chemistry addresses issues such as energy conversion, surface 
interactions, and the use of self-healing materials in Physical AI robots. 
Batteries and fuel cells, as well as systems that generate energy through 
chemical reactions (e.g., enzymatic fuel cells), can increase robotic 
autonomy.

Chemical Synthesis identifies the chemical processes needed to 
develop advanced polymers, composites, flexible materials, nanomaterials, 
and self-healing structures. In particular, the field of soft robotics focuses 
on the development of silicone, hydrogels, or other synthetic polymers.

Analytical Chemistry helps design and examine chemical sensing 
mechanisms that allow robots to detect their own status and environment. 
Sensor design for detecting gases, chemicals, or biological substances in a 
robot’s surroundings is guided by this field. It plays a critical role in safety, 
environmental monitoring, and medical diagnostic robots.

Organic Chemistry can be employed in designing carbon-based 
materials. Carbon-based flexible electronics, wearable sensors, or thin-film 
transistors (TFTs) are pivotal applications in this context.

Biochemistry is essential for advanced applications, such as “bio-
inspired” fuel cells or enzyme-based sensors, which are developed by taking 
inspiration from reactions inside living cells (e.g., enzymatic reactions). 
Robotic systems inspired by cellular and enzymatic processes are becoming 
increasingly prevalent.

In conclusion, chemistry offers an important layer that differentiates 
Physical AI from conventional robotic approaches by enabling reactive or 
adaptive interactions between robots and their environment.

Materials Science provides the scientific basis for the “body,” “sensors,” 
and “actuators” required in “Physical AI” systems. The choice of a robot’s 
structural material is extremely important, as a combination of lightweight, 
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flexible, and durable materials directly influences the robot’s performance.

Polymer Science allows the design of flexible yet robust materials for 
use in flexible robotic systems, “soft actuators,” and wearable technologies. 
For example, Shape Memory Polymers (SMP) can change shape with 
thermal or electrical stimulation.

Composite Materials involve specially engineered materials that 
optimize desired characteristics—such as lightweight properties, durability, 
and adaptability under various conditions—by combining different 
materials. This approach can achieve both high strength and lightness and 
is widely used. 

Characterization analyzes the micro- and macro-scale properties of 
materials (e.g., mechanical, electrical, or thermal properties) to clarify 
design requirements. Techniques such as microscopy (SEM, TEM) and 
spectroscopy (FTIR, Raman) examine material microstructure, surface 
roughness, electrical conductivity, and other features, which is essential for 
selecting the right materials in design and production.

Processing covers methods of handling and shaping raw materials 
during manufacturing. Additionally, techniques in the manufacturing 
process—such as casting, extrusion, injection molding, sintering, or 3D 
printing—impact the quality and scalability of final robotic components. 
Hence, correct material selection and processing techniques enhance both 
the durability and functionality of Physical AI robots.

Through advances in nanotechnology and next-generation surface 
coating techniques (e.g., superhydrophobic or self-cleaning surfaces), 
materials science confers additional capabilities to robots under various 
environmental conditions.

In conclusion, the interdisciplinary interactions can be summarized 
as follows:

Þ	 Interaction between Materials and Mechanics: New-generation 
composite materials and processable polymers optimize the balance 
among weight, durability, and performance in robotic design.

Þ	 Interaction between Biology and Machine Learning: By 
analyzing biological data with machine learning methods, robots can 
form behavioral models that enable them to better understand and adapt 
to their environment.

Þ	 Interaction between Chemistry and Materials Science: Self-
healing materials, electrochemically activated actuators (Yang et al., 
2024), or thermally responsive polymers can be developed to incorporate 
innovative functionalities into robotic systems.
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Þ	 Interaction between Mechatronics and Biomechanics: Actuation 
mechanisms resembling the human musculoskeletal system can enable 
robots to move more naturally and flexibly.

Þ	 Interaction between Networking and Robotics: Coordinated 
operation among numerous Physical AI robots (e.g., on a production line) 
is made possible by networking technologies, facilitating real-time data 
sharing across robotic systems.

The success of Physical AI relies on an integrated and interdisciplinary 
approach that combines fundamental fields such as Mechanical Engineering, 
Computer Science, Biology, Chemistry, and Materials Science. Equipping 
robots not only with “artificial intelligence” but also with intelligent materials, 
biologically inspired components, and advanced chemical processes where 
necessary will shape future AI solutions in physical environments. This 
holistic approach paves the way for robots to become more flexible, more 
durable, environmentally adaptive, and continuously capable of learning. 
Consequently, bringing together expertise from all these diverse domains 
is key to maximizing the potential of Physical AI.

All these concepts are indeed critical components of the Physical AI 
paradigm. Furthermore, the interdisciplinary nature of these interactions 
highlights why Physical AI systems necessitate such a broad scope of 
research and development activities. In addition, issues such as control 
theory, human-robot interaction (HRI), effective user interfaces, and 
sociotechnical dimensions (e.g., ethics, safety, and regulatory frameworks) 
are becoming increasingly important in Physical AI projects.

Another application that differs among Physical AI approaches is 
Swarm Intelligence, which draws inspiration from collective behavioral 
patterns observed in nature. It investigates how a large number of simple 
agents can solve complex problems through distributed, self-organizing 
interactions. Examples from nature include ants arranging their colonies, 
bees coordinating their hives, and fish swimming in schools to evade 
predators—these are the most commonly known natural cases in the field 
of swarm intelligence. This approach involves large groups of robots or 
software agents that interact with one another or the environment through 
simple signals.

One of the core principles of swarm intelligence is Distributed Control, 
where each robot or agent makes decisions independently based on simple 
rules, using locally gathered information. Through Local Interaction, the 
agents do not execute a global plan but only interact with nearby agents and 
the environment, thus facilitating scalability. Self-organization emerges 
from each unit adhering to simple rules, leading to emergent behavior 
at the system level. In subsequent stages, more complex tasks can be 



Next-Generation Autonomous Machines: Applications and Impacts of Physical AI 19

collectively accomplished. With Adaptation, the swarm can swiftly respond 
to environmental changes; other agents can take over the tasks of those that 
fail or become inoperative, thereby increasing robustness.

Depending on the nature of the task, using a single robot or employing 
a swarm intelligence approach may have advantages and disadvantages: 

Complexity: A single robot approach requires incorporating complex 
tasks into one robot’s architecture, which demands a powerful and often 
more expensive design, both in hardware and software. If the robot fails, 
the entire system loses functionality. In contrast, a swarm agent is typically 
simpler and cheaper to produce, although developing distributed control 
algorithms can be significantly more challenging. Still, a failure in one 
agent does not paralyze the entire system, providing high fault tolerance.

Scalability: With a single robot, performance improvements often 
involve adding more hardware or software modules, yet physical size 
and power constraints limit these enhancements. By contrast, swarm 
intelligence allows for scaling by adding more robots to the group, which 
can carry out tasks in parallel to boost overall performance. However, 
designing decentralized algorithms, software, and protocols for controlling 
large swarms requires advanced expertise.

Cost: A single robot can have high production costs—especially if it 
requires multiple capabilities, such as a diverse sensor array, a powerful 
processor, etc. Maintenance is simpler because there is just one system to 
maintain, though adding advanced features can rapidly raise maintenance 
costs. In swarm intelligence, each robot may be cheaper, but using 
hundreds or thousands of units can increase total expenditure. Thanks 
to the distributed architecture, defective robots can be replaced easily, 
and maintenance or backup strategies are more flexible. In the long term, 
especially with mass production or the use of simple hardware components, 
the total cost can be lower than that of one large, complex robot.

Reliability and Fault Tolerance: In a single-robot system, any hardware 
or software malfunction can halt the entire operation (i.e., a single point of 
failure). In swarm intelligence, even if one robot fails, others continue to 
fulfill the task. Depending on the level of task allocation and collaboration, 
the overall functionality can be maintained at a high level of certainty.

Software and Algorithm Development Challenges: A single-robot 
control system might initially seem simpler, but increasing the robot’s 
versatility also increases algorithmic complexity. However, since testing and 
validation occur on a single platform, it is generally easier to detect errors. 
In swarm intelligence, multiple interactions among simple robots produce 
emergent behavior, requiring the development of collective intelligence 
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algorithms. Additionally, designing localization, communication, and 
consensus mechanisms can be complex. Testing and simulation can become 
computationally heavy, making it difficult to generate accurate results.

Application Areas: A single robot can be used in large, complex 
operations that require a general-purpose design. Examples include medical 
robotics (surgical robots), humanoid robots, or industrial robots, often 
developed around a well-defined purpose and function, with established 
safety standards and control procedures. Swarm intelligence, however, is 
advantageous for parallel search operations in search and rescue missions 
(e.g., under rubble or in hazardous environments). In agricultural robotics, 
multiple robots can simultaneously monitor large areas for plant health 
or pest detection. In exploration, surveillance, and mapping, swarms can 
provide more efficient and cost-effective solutions.

Hence, swarm intelligence aims to transfer the distributed decision-
making and self-organizing mechanisms found in large numbers of simple 
organisms into technological applications. Choosing to accomplish a task 
with a single robot versus a swarm of robots offers significant advantages 
in fault tolerance, scalability, and collective interaction. Yet, designing, 
controlling, and managing such systems can be more complex than 
developing a single-robot solution.

If high adaptability and parallel task execution are required, swarm 
intelligence becomes an appealing option. On the other hand, a single-robot 
solution, when specifically tailored to a given problem, can provide lower 
software complexity and easier management. However, the risk of a single 
point of failure and limitations in scalability must be carefully considered.

In conclusion, whether to use a single-robot or a swarm intelligence-
based approach depends on the nature of the task, cost objectives, 
acceptable fault tolerance, and expected performance. Particularly as task 
scale and complexity grow, swarm intelligence is increasingly important 
within physical AI, robotics, AI, and multi-agent systems, taking on a more 
prominent role in practical applications.
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Chapter 3
HUMANOID APPLICATIONS OF PHYSICAL AI

The term “humanoid” refers to advanced robotic systems in which 
Physical AI is implemented in a human-like body structure (i.e., a 
humanoid form) and employs Artificial Intelligence (AI) technologies in a 
physical environment (Huang, 2024). Essentially, these systems are created 
by combining mechanical designs and control engineering approaches that 
model the anatomy and functionality of the human body with high-level 
artificial intelligence techniques. Figure 4 below shows some humanoids 
produced in 2024, presented in sequential order (Thompson, 2024).

Figure 4. Some Humanoid Robots of 2024

A humanoid is designed to resemble a human, particularly in 
appearance and mobility. Depending on the situation, the head, torso, 
arms, and legs are human-like, and the degrees of freedom are generally 
close to those of human anatomy. This ensures a more natural human-
machine interaction and improves the robot’s ability to integrate into social 
environments.

For these robots, high levels of autonomy and learning capacity are 
provided through advanced methods such as Machine Learning, Deep 
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Neural Networks, and Reinforcement Learning. For instance, capabilities 
like face recognition, object detection, speech command interpretation, 
and natural dialogue enable humanoid robots to interact with humans 
more naturally.

Humanoid robots are equipped with a large number of sensors (tactile 
sensors, cameras, LiDAR, microphones, etc.). The data are processed using 
sensor fusion and real-time processing techniques, enabling the humanoid 
to quickly adapt to its dynamic environment. At this stage, Computer 
Vision and Natural Language Processing approaches play a critical role.

Human-like walking, running, jumping, and even climbing stairs can 
be achieved through precise kinematic and dynamic modeling of the robot. 
Methods such as Inverse Kinematics, Trajectory Planning, and Optimal 
Control are crucial for achieving flawless movements.

Control in humanoid robots is generally handled at two main levels: 
low-level control (instantaneous balance and movement at the motor level) 
and high-level control (task planning, decision-making, and learning). 
This architecture provides the robot with multi-tasking capabilities and 
flexibility for executing complex tasks. Since humanoids bring together 
different engineering fields (e.g., mechanical, electronics, software, and 
control theory) in a holistic approach, their technical building blocks are 
also highly diverse. 

As a technical component of the mechanical structure, the most 
commonly used actuators for joint movement in humanoid robots are Servo 
Motors and Brushless DC Motors (BLDC). When high torque, low noise, 
and precision requirements are paramount, BLDC motors are preferred. 
In special designs where linear motion is required, linear actuators may 
be used. Series Elastic Actuators (SEA) incorporate a compliant element 
(such as a spring) between the motor and the load, providing more precise 
torque measurement and force feedback (Lee & Oh, 2019). Their usage 
is increasingly common in environments demanding safe human-robot 
interaction and smooth transitions. Meanwhile, Variable Stiffness Actuators 
(VSA) represent a new generation of actuators that can adjust the joint’s 
stiffness and damping parameters in real time to achieve more natural, 
human-like movement and compliance (Sun, Xiong, Chen, Chen, & Yang, 
2024). Passivity-Based Control and Compliance Control approaches aim to 
keep the robot stable and interaction-friendly by regulating joint stiffness 
settings and force/position feedback. For example, in manufacturing 
environments or medical applications, it is critically important that a 
robot safely interacts with humans. Adaptive Control and Robust Control 
methods automatically adjust the robot’s behavior in unknown or changing 
environments, minimizing performance loss.
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Regarding transmission, gearboxes can increase torque and reduce 
speed, or vice versa. For precise control, mechanisms such as planetary 
gearboxes or harmonic drives with low backlash and high gear ratios are 
preferred. In some joints or limbs, belt or chain-based transmission systems 
may be used to reduce weight or provide smoother transitions, especially if 
spacing in the construction requires it. In certain precise joints, direct drive 
is used; here, the motor shaft is directly connected to the joint, minimizing 
mechanical backlash in the actuator.

From the perspective of robot joints, revolute joints allow rotational 
movement similar to human joints. Prismatic joints, which provide linear 
motion and are commonly seen in industrial robots, might be used less 
frequently in humanoid designs, depending on the needs. Multi-axis joints 
enable multiple rotation axes at a single joint, facilitating more complex 
movements (Beard, 2024).

In terms of materials, aluminum alloys and titanium offer advantages 
due to their strength and light weight. Carbon fiber and other composite 
materials reduce overall robot mass, improving energy efficiency and 
mobility. Certain plastics and polymers may be used for low-cost, flexible 
parts or protective casings. From a design standpoint, employing cage 
structures and methods like topology optimization can yield lightweight 
designs (nTopology, 2024). Figure 5 below shows some optimized parts 
(Bernardino, 2022).

Figure 5. Optimized Parts

Moreover, for thermal management, fans, heatsinks, or liquid cooling 
systems may be utilized to control the heat generation of actuators and 
electronic components. With careful cable harness design, sensor and 
power cables inside the robot can be managed in an organized, flexible, and 
safe manner.
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Regarding the vision system, an RGB camera is necessary for capturing 
color images and performing basic tasks such as object detection and face 
recognition. Stereo/Depth cameras provide 3D depth information that 
enables the robot to perceive its environment more accurately. Computer 
Vision algorithms then process the data from these sensors to support the 
robot’s decision-making and navigation processes. 

From the sensor perspective, the Inertial Measurement Unit (IMU) 
contains accelerometers and gyroscopes, which measure orientation, 
acceleration, and angular velocity, playing a critical role in balance control 
(SBG Systems, 2023). Force/Torque sensors, located either at the joint 
level or on end-effectors, measure the forces applied by the robot and the 
reactions they provoke during interaction. These sensors form the basis 
of Compliant Control and Haptic Feedback applications. Tactile sensors, 
especially on the robot’s hands and soles, measure contact pressure 
and friction, enhancing the robot’s ability to grip objects sensitively and 
maintain balance (Tacterion, 2023). Microphones enable the robot to 
detect voice commands and environmental sounds, which is important 
for Speech Recognition and Natural Language Understanding (NLU). 
Temperature and humidity sensors provide additional environmental data, 
while proximity sensors help prevent collisions and provide early warnings 
of obstacles in the robot’s vicinity.

From a low-level control standpoint, the motor control loop employs 
algorithms such as Proportional-Integral-Derivative (PID) or Model 
Predictive Control (MPC) to regulate instantaneous position, speed, 
and torque at each actuator (Mortenson, 2024). Additionally, real-time 
processing ensures that critical functions, such as balance calculations 
in experimental biped robots—ZMP (Zero Moment Point) and Inverse 
Kinematics—can be performed within milliseconds.

At the high-level control layer, task planning and decision-making 
modules handle various robot tasks (e.g., walking, carrying objects, 
conversing). Behavior Tree or State Machine-based algorithms facilitate 
logical transitions between different states. Cognitive architectures like 
SOAR and ACT-R are employed for more “human-like” reasoning, 
problem-solving, and long-term learning (Kilicay-Ergin & Jablokow, 2012).

Regarding middleware, the Robot Operating System remains the most 
widely used platform, owing to its broad plugin support and modular 
structure (ros.org, 2024). It provides numerous packages for sensor 
fusion, navigation, simulation, and visualization. Alternative middleware 
frameworks such as YARP, LCM, and OROCOS may also be chosen based 
on specific needs.
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When considering the integration of Artificial Intelligence (AI), 
methods such as Object Detection (YOLO, Faster R-CNN), Semantic 
Segmentation (U-Net, SegNet), and Pose Estimation (OpenPose) within the 
scope of Computer Vision assist the robot in interpreting visual information. 
In terms of Natural Language Processing (NLP), technologies such as 
Speech Recognition (Google Speech API, CMU Sphinx) and Language 
Understanding (BERT, GPT) enable spoken interaction with humans. Text-
to-Speech (TTS) algorithms (e.g., WaveNet and Tacotron) allow the robot 
to speak in a natural manner (Oord & Dieleman, 2016). Within the scope of 
Reinforcement Learning (RL), Deep Reinforcement Learning methods such 
as PPO, DDPG, and SAC enable the robot to learn tasks related to walking, 
balance, or complex movements on a “trial-and-error” basis. Moreover, 
strategies exist for training robots initially in simulation environments and 
subsequently transitioning them to operate successfully on real hardware. 
Ontology-based approaches and Graph Database methods facilitate access 
to conceptual information (Graph.build, 2024), while high-level logical 
inference and planning (e.g., Hierarchical Task Network Planning – HTN) 
increase the system’s flexibility (Geeksforgeeks, 2024).

From the perspective of battery systems, Lithium-ion (Li-ion) and 
Lithium Polymer (Li-Poly) batteries are frequently preferred due to their 
light weight and high energy density. Additionally, a Battery Management 
System (BMS) monitors the health and charge–discharge balance of the 
battery cells, extending battery life and enhancing safety. Some advanced 
designs may also support wireless charging pads and technologies such as 
inductive charging. In addition, research on energy harvesting (e.g., solar 
power, waste heat recovery) holds potential for extending the operating 
time of robots.

Regarding power optimization, Dynamic Power Scaling can be 
employed to dynamically adjust the actuator power or processor frequency 
according to the robot’s tasks. Through Sleep/Wake Mechanisms, unused 
system components can be temporarily powered down, thus improving 
energy efficiency.

In terms of communication and networking, robots typically 
possess both wired and wireless connectivity. Utilizing high-speed serial 
communication in wired connections between robot components or 
sensors ensures that sensor data is transmitted with minimal latency. In 
wireless solutions, using Wi-Fi, 5G, or Bluetooth enables remote access, 
cloud computing, and data sharing. For processing control signals that 
require low latency, Real-Time Ethernet solutions (e.g., EtherCAT) or 
Time-Sensitive Networking (TSN) may be preferred (Botek Otomasyon, 
2020).
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Concerning safety and fault tolerance, redundancy is crucial; having 
multiple and backup versions of critical sensors and components allows rapid 
intervention in the event of a malfunction and ensures the continuation of 
the system’s essential functions. Failsafe Mechanisms, designed to protect 
against issues such as overload, overheating, or electrical short circuits, 
include both hardware and software solutions that shut down the system 
to prevent damage. Soft Actuators and Torque Limiting methods reduce 
impact force during human–robot interaction, thereby lowering the risk 
of injury. Vision-Based Collision Avoidance, facilitated by cameras and 
proximity sensors, provides predictive obstacle detection and avoidance. 
Manual intervention by an operator or maintenance personnel in critical 
situations is also of great importance, particularly in enclosed or crowded 
areas, to ensure safety.

When examining the development of humanoid robots, a particular 
emphasis is placed on Whole-Body Control. The ability for a humanoid robot 
to control all of its joints—including arms, legs, and torso—in a synchronized 
manner allows for more efficient and balanced execution of complex 
movements (e.g., climbing up and down stairs). For Dynamic Balancing and 
stability control, methods based on the Zero Moment Point (ZMP) concept 
enable the robot to remain upright and walk steadily in real time. Another 
emerging area concerns sensors. Improved visual, auditory, and tactile data 
collection and integration enable robots to better perceive humans and their 
environment and respond more appropriately. In addition, there have been 
advances in cloud robotics. Offloading part of the computationally intensive 
AI algorithms to the cloud can reduce the onboard hardware requirements 
of the robot while taking advantage of continuously updated databases in 
real time. However, in situations where latency and bandwidth are concerns, 
powerful processors and GPU units on the robot itself can enhance real-
time decision-making capabilities. Figure 6 below illustrates the changes in a 
humanoid over the years (Bernardino, 2022).

Figure 6. Atlas’ s design evolution (from 2013 to 2023)
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Furthermore, Figure 7 below depicts some of the technical components 
of a humanoid (Bernardino, 2022).

Figure 7. Some Components of Atlas Humanoid Robot

For instance, the Atlas Humanoid Robot, first introduced by Boston 
Dynamics in 2013 and continuously updated, is a humanoid robot whose 
primary goal is to provide an agile and dynamic platform that mimics 
human movement. Atlas is currently being developed to operate in 
search and rescue missions, hazardous tasks, and operations that require 
collaboration with humans. 

The robot can run, jump, and even perform backflips in a remarkably 
competitive manner, a feat made possible by advanced motion control 
algorithms and sensor systems. For environmental sensing and navigation, 
Atlas employs lidar technology and stereo cameras. Lightweight structural 
components and the use of advanced design techniques such as lattice 
structures and topology optimization, in addition to durable materials, 
support the robot’s agility and flexibility. Atlas also utilizes advanced 
hydraulic systems for precision motion and balance. Equipped with AI-
assisted systems that continuously compute and adjust its movements 
and balance, Atlas can maintain its footing under challenging terrain and 
unstable conditions through real-time feedback mechanisms. Inspired by 
parkour, Atlas can perform complex maneuvers to overcome obstacles, 
showcasing running, jumping, and balancing on a single foot with 
remarkable stability and speed. 

When interacting with humans, Atlas can easily imitate complex 
motions, thereby enhancing human–robot interaction. Observing 
Atlas’s evolution suggests that humanoid robots could have even broader 
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applications in the future: assisting humans in hazardous or hard-to-access 
areas during search and rescue missions, handling heavy loads in industrial 
settings such as factories or construction sites, or providing social support 
in homes and public spaces. It is anticipated that Atlas will be deployed in 
more extensive projects in the coming years.

In line with developments in 2024, Atlas’s design has been updated. 
Additionally, a fully autonomous technical demonstration was presented 
to highlight potential industrial applications. Figure 8 below shows the 
current design of Atlas (Boston Dynamics, 2024a). 

  
Figure 8. New Atlas Humanoid Robot (2024)

Moreover, Figure 9 below depicts a task performed entirely autono-
mously by Atlas in an industrial setting, wherein it carries motor covers 
(Boston Dynamics, 2024b).
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Figure 9. Atlas Performing a Fully Autonomous Task

In conclusion, the technical components of a humanoid robot must be 
addressed across a wide spectrum, ranging from the mechanical structure 
to the AI architecture, and from energy management to communication 
protocols. Human-like mobility and the potential for natural interaction 
can only be realized if these components operate in high alignment with 
one another.

Looking ahead, rapid developments in robotics, AI, and human–
computer interaction (HCI) indicate that far smarter, more precise, safer, 
and more cost-effective versions of these technologies are likely. Robots 
with autonomy and learning capacities in the physical world are poised to 
have transformative impacts in numerous sectors, including healthcare, 
education, manufacturing, and even space exploration. However, in 
addition to technical progress, ongoing oversight, regulation, and scrutiny 
are required with respect to ethical and societal dimensions (e.g., privacy, 
security, workforce transformation). These considerations not only 
underscore the foundational structure of humanoid technology but also 
illuminate future research and potential application areas. When each of 
these technical components—each of which requires in-depth research and 
expertise—is brought together in an integrated manner, humanoid robots 
become capable of effective operation under real-world conditions.
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Chapter 4
VARIOUS APPLICATIONS, IMPACTS AND 

FUTURE TRENDS OF PHYSICAL AI

Physical AI may have numerous transformative effects on humanity 
in the future, viewed from multiple perspectives. The primary focus of this 
technology is enabling artificial intelligence (AI) systems with cognitive 
functions to directly interact with the physical world, make autonomous 
decisions, and possess the capacity to move. In this context, examples such 
as “humanoid robots” and “autonomous vehicles” are among the most 
striking future applications that could have a far-reaching transformative 
impact. It is important to assess the social, economic, and ethical dimensions 
of these applications, as well as the technical opportunities and challenges 
they may present.

Physical AI’s “sensing” and “actuating” capabilities not only allow the 
system to perceive the external world but also enable it to intervene in its 
surroundings. Consequently, “Perception,” “Decision-making,” “Motion 
Planning,” and “Control” mechanisms should be seamlessly integrated into 
people’s lives due to their significant potential to influence daily routines. 

Since humanoid robots feature a physical design that resembles the 
human body, they can more easily adapt to the tools, environments, and 
tasks encountered in daily life. For example, by virtue of their human-
like arms, humanoids can conveniently use devices designed for human 
ergonomics. Through human-like facial expressions and structural posture, 
they can add a more “natural” dimension to social interactions with 
humans. More importantly, areas such as care for the elderly or individuals 
with disabilities represent important potential application domains for 
humanoid robots. These robots can perform functions such as daily 
assistance (e.g., meal preparation and medication reminders), physical 
support (e.g., aiding individuals with restricted mobility), and “cognitive 
assistance” (e.g., memory enhancement and the monitoring of mental 
stimulation activities). By doing so, they can serve supportive roles both 
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in institutional care facilities and in personal environments, alleviating the 
staffing burden on healthcare services and enhancing personalized care 
opportunities. For instance, Tesla Bot appeared at a Tesla event on October 
10, 2024, where it was present among a large group of people for social 
purposes and interacted with them. Figure 10 below shows a moment from 
this event (Tesla, 2024b).

Figure 10. The Tesla Bot amidst the Crowd

Additionally, Figure 11 illustrates Tesla Bot serving people in the crowd 
during the same event (Tesla, 2024b).

Figure 11. Tesla Bot in the Act of Serving Humans

On the other hand, in the context of “factories of the future,” humanoid 
robots and other Physical AI elements can offer more flexible and intelligent 
automation on production lines. Today, humanoid robots that can replace 
or work in tandem with robotic arms are capable of undertaking specialized 
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or complex assembly tasks in place of humans. Within the framework 
of “Human-Robot Collaboration (HRC),” humans and robots can share 
common tasks to maximize efficiency.

For example, Figure AI and BMW have achieved significant progress 
in the capabilities of the Figure 02 humanoid robot used on production 
lines. This robot has increased its speed by 400% and improved its success 
rate by sevenfold. A video published by the company demonstrates that 
Figure 02 completes 1,000 placement operations per day. In particular, its 
ability to handle sheet metal placement tasks requiring millimeter-level 
precision is highlighted. In this task, the robot must place sheet metal parts 
into a narrow space without collisions and with precision—ten times more 
challenging than previous tabletop manipulation tasks. Figure 02 has been 
tested at BMW’s Spartanburg plant and is planned to continue in use for 
years to come. This collaboration showcases the potential of humanoid 
robots in automotive manufacturing processes. Moreover, Figure AI has 
received an investment of 675 million dollars from major investors such as 
OpenAI, Nvidia, Microsoft, and Jeff Bezos, bringing the company’s valuation 
to 2.6 billion dollars. The company plans to deploy more humanoid robots 
in real-world environments. These developments reveal the potential of 
humanoid robots to enhance productivity by working alongside humans 
on production lines and taking on repetitive tasks. Figure 12 below shows 
the “Figure 02” humanoid robot at the BMW facility (Sinha, 2024). 

Figure 12. Humanoid Robot (known as “Figure 02”) in BMW’ s Facility

In the case of autonomous vehicles, “autonomous driving” technologies 
have the potential to radically transform people’s transportation practices. 
Beginning with semi-autonomous systems such as “Advanced Driver 
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Assistance Systems (ADAS),” the process is evolving toward a fully driverless 
experience. Generally, this development may lead to fewer human-related 
accidents, reduced traffic congestion, and improved energy efficiency—
effects that can be considered highly positive. Furthermore, in contrast to 
ride-hailing, the widespread adoption of ride-sharing could help alleviate 
urban transportation burdens (Ecolane, 2022). Figure 13 below shows 
Tesla’s fully autonomous vehicle called Cybercab, which lacks a steering 
wheel and pedals (Edkins, 2024).

Figure 13. New Tesla Cybercab

Autonomous trucks and drones could revolutionize critical logistics 
processes such as “last-mile delivery” (Onfleet, 2023). By partially reducing 
the need for human drivers or delivery personnel, they offer the possibility 
of shorter delivery times and lower costs in the e-commerce industry. 
Similarly, in smart warehouses, operations could be carried out more 
rapidly and with fewer errors by employing autonomous forklifts and 
robotic couriers equipped with self-navigation systems. Figure 14 below 
shows Tesla’s fully electric semi truck, which has the potential to be fully 
autonomous with a “Full Self Driving” option (Tesla, 2024a).
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Figure 14. Tesla Semi Truck

From an urban planning and infrastructure standpoint, developments in 
smart traffic lights, “vehicle-to-infrastructure” (V2I), and “vehicle-to-vehicle” 
(V2V) communication can help optimize traffic flow (Dey, Rayamajhi, 
Chowdhury, Bhavsar, & Martin, 2016). In this regard, the design of next-
generation highways and intersection systems, the integration of shared 
autonomous vehicle fleets, and the development and expansion of electric 
vehicle charging infrastructure will profoundly influence future urban 
planning strategies. Figure 15 illustrates an intelligent city structure where 
smart traffic lights, vehicles, and pedestrians communicate with each other, 
and traffic flow is autonomously managed and optimized (Aster Fab, 2021).

Figure 15. Illustration of Autonomous Traffic Flow Management

When considering societal and economic impacts, the widespread 
adoption of Physical AI-based systems may lead to profound transformations 
in the labor market. The takeover of certain routine or hazardous tasks 
by robots has the potential to enhance both safety and efficiency, while 
simultaneously allowing human labor to be directed toward more creative 
and strategic areas. On the other hand, during transitional periods in which 
skill sets do not align with emerging requirements, issues such as rising 
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unemployment, income disparities, and the need for “reskilling” (i.e., 
acquiring new skills) may arise (Tamayo, Doumi, Goel, Ondrejkovic, & 
Sadun, 2023). 

With respect to economic growth and innovation, improvements 
in productivity and efficiency, along with the emergence of new sectors 
and business models, may create additional momentum. The growth of 
the “service robots” market could stimulate entrepreneurs and investors 
to pursue new opportunities in this domain (Intel, 2024). Moreover, it is 
possible for the ecosystems of autonomous vehicle and robot manufacturers 
to expand, thereby generating employment. In the long term, AI-driven 
technologies—which form the backbone of Physical AI—will become one 
of the critical factors shaping global competition.

In terms of social acceptance and ethical responsibility, errors made by 
systems that interact with the physical environment can result not only in 
digital but also in tangible harm. Consequently, safety and accountability 
gain importance regarding societal acceptance. For instance, if an 
autonomous vehicle is involved in a traffic accident, ambiguity surrounding 
liability can be problematic. Likewise, if a humanoid robot providing 
caregiving services is involved in an unwanted incident, questions about 
how legal processes will be carried out become highly significant. These 
negative scenarios make it imperative to introduce new regulations and 
ethical guidelines.

Regarding technical challenges and areas for development, there is a 
pressing need for significant progress to ensure consistency in perception 
and decision-making processes. For Physical AI systems to perform 
flawlessly, extensive advancements are required in areas such as “sensor 
fusion,” “real-time data processing,” and “reinforcement learning (RL).” 
Autonomous vehicles that utilize multiple sensors (e.g., LIDAR, radar, and 
cameras) must reliably collect data under all conditions, including adverse 
weather, traffic, and road situations. Tesla, for example, has removed radar 
and ultrasonic sensors from its vehicles under the Tesla Vision system 
and aims to collect reliable data using only camera-based systems (Tesla 
Support, 2024). 

In terms of durability, one example is that autonomous electric vehicles 
are built with more robust chassis designs (Singh, 2020). This approach 
addresses the potential damage a battery might incur under adverse 
conditions. In addition, humanoid robots—featuring a number of degrees 
of freedom comparable to that of humans—require complex control 
algorithms to maintain dynamic stability across multiple axes of motion, 
while also necessitating structural robustness. Developments in battery 
technology, materials science, and mechanical design—particularly the 
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creation of lightweight yet sturdy structures—further contribute to making 
robots more practical and long-lasting.

From the perspective of communication and security, technologies 
such as “5G/6G” are essential for the efficient operation of autonomous 
vehicles, due to the need for high-speed, low-latency connections. However, 
cybersecurity vulnerabilities pose significant risks for Physical AI systems. 
If a robot or vehicle is hacked, large-scale damage could ensue. Therefore, 
innovations in “secure communication protocols” and “cryptography” are 
of critical importance.

In the near future, it is plausible that urban environments will 
encompass a broad ecosystem, including driverless public transportation, 
delivery robots, humanoid assistants, and industrial manufacturing robots. 
Fields that address social needs such as entertainment, companionship, and 
education are expected to expand rapidly. To meet the growing demands 
for regulation and legal oversight, countries will likely accelerate efforts 
to establish “standardization” and licensing processes that ensure Physical 
AI technologies are used safely and within well-defined boundaries of 
responsibility.

Physical AI represents one of the most tangible forms of artificial 
intelligence, with the potential to affect every sector of society. Humanoid 
robots, offering human-like interaction and service capabilities, could 
spearhead revolutionary transformations in fields such as healthcare, 
caregiving, and manufacturing. Autonomous vehicles, meanwhile, may 
reshape transportation and logistics systems, prompting sweeping changes 
in urban planning and economic models. Nevertheless, it is essential to 
address ethical, legal, security, and social acceptance concerns throughout 
the development and implementation of these technologies.

As these new generations of autonomous machines become 
increasingly integrated into daily life, it is vital to anticipate potential 
negative consequences and develop solutions accordingly. The labor 
market will likely undergo rapid restructuring. Especially for positions 
categorized as repetitive tasks, the displacement of such jobs by machines 
may further widen the gap between skilled and unskilled labor. This could 
deepen social inequalities and create substantial employment challenges for 
certain occupational groups. Societies have faced comparable challenges 
during past transitions, particularly under Industry 4.0, when automation 
technologies became widespread. However, because Physical AI partially 
automates decision-making processes, the scale and velocity of this 
transformation may be significantly larger.

At this juncture, controlling and monitoring the operation of systems 
capable of autonomous decision-making raises important technical and 
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ethical questions. For example, “On what value judgments are machine 
learning algorithms trained?” or “To what extent should human intervention 
be permitted?” may become increasingly common inquiries in the future. 
Additionally, the evolution of these technologies may heighten the risks 
related to data privacy. The proliferation of technologies such as facial 
recognition could threaten individual privacy and dangerously increase the 
capacity for digital surveillance.

Closely related to these developments is the issue of algorithmic 
bias, which can reproduce existing prejudices and inequalities through 
technology (Jonker & Rogers, 2024). Physical AI systems trained primarily 
on data from specific demographic groups may exhibit higher error rates 
or unfair treatment toward underrepresented populations. For example, 
an autonomous patient-monitoring robot used in hospitals could pose 
direct health risks if it misclassifies or incorrectly diagnoses individuals 
from certain groups. Such scenarios are not limited to healthcare; similar 
inequities may arise in sectors such as education, security, and business.

Another significant negative impact lies in the realm of information 
pollution and the potential for public opinion to be manipulated. Physical 
AI tools may be exploited by malicious actors to generate and disseminate 
manipulative content. The rapid proliferation of data—whether genuine 
or fabricated—could escalate social tensions and exacerbate political 
polarization. Under such circumstances, public discourse and trust among 
citizens might deteriorate, adversely affecting democratic processes and 
social harmony.

Furthermore, the expansion of security risks must be emphasized. Even 
though various security protocols are being developed, the broad adoption 
of autonomous systems inherently enlarges the pool of potential targets. 
Advanced hacking methods could be used to disable critical infrastructure, 
including transportation, energy, and healthcare systems, leading not 
only to financial losses but also to threats against human lives. In military 
applications, the development and deployment of lethal autonomous 
weapons could transform the very concept of warfare and result in ethical 
and humanitarian crises.

Additionally, the production and continuous operation of Physical AI-
based systems necessitate substantial energy and raw material consumption. 
This may exacerbate existing problems related to global warming and 
ecological degradation. Moreover, although it is foreseen that robots will 
be produced in significantly higher numbers in the future, strategies for 
disposing of or recycling these machines once they reach the end of their 
lifecycle remain insufficiently developed.

Finally, society’s growing dependence on technology may present 
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a grave risk. Delegating human responsibilities and competencies to 
machines could, over time, weaken both individual and collective decision-
making capacities. As technological systems dominate all decision-making 
processes, humans might lose creativity and flexibility in their thinking. 
Furthermore, if people become complacent or incapable of responding to 
technological failures, large-scale societal problems could ensue. In short, 
the potentially adverse impacts of Physical AI range from shifts in the labor 
force and socio-economic structures to ethical and privacy dilemmas, 
environmental damage, security breaches, and the erosion of human 
autonomy. Hence, it is imperative for technology developers, policymakers, 
and all segments of society to take early-stage preventive and regulatory 
measures to address these risks.

In summary, while Physical AI—signifying the seamless integration 
of artificial intelligence into the physical world—presents significant 
opportunities for a sustainable and human-centric future, robust 
oversight and multidisciplinary approaches to governance and control are 
indispensable. Technological progress is likely to yield positive long-term 
outcomes only if it unfolds in harmony with societal values.
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