

Genel Yayin Yonetmeni / Editor in Chief C. Cansin Selin Temana
Kapak & i¢ Tasarim / Cover & Interior Design ¢ Seriiven Yayinevi
Birinci Basim / First Edition « © Aralik 2024

ISBN ¢ 978-625-5552-23-5

© copyright

Bu kitabin yayin hakki Sertiven Yayinevi'ne aittir.

Kaynak gosterilmeden alint1 yapilamaz, izin almadan hicbir yolla ¢ogaltilamaz.
The right to publish this book belongs to Seriiven Publishing. Citation can not
be shown without the source, reproduced in any way without permission.

Seriiven Yayinevi / Seriiven Publishing

Tiirkiye Adres / Turkey Address: Kizilay Mah. Fevzi Cakmak 1. Sokak
Umit Apt No: 22/A Cankaya/ANKARA

Telefon / Phone: 05437675765

web: www.seruvenyayinevi.com

e-mail: seruvenyayinevi@gmail.com

Baski & Cilt / Printing & Volume
Sertifika / Certificate No: 47083

FPGA-Based
Architectures: An
Introduction to

Experimental

Designs with VHDL

Mehmet SOnmez

FPGA-Based Architectures: An Introduction to Experimental Designs
with VHDL

CONTENTS

1. Introduction to Project Desigh in Quartus 1
Software

2. Error Correction Algorithms: An Introductionto 18
Previous Works, Theoretical Analysis and
Implementation

3. Simulation Results for Digital Designs 33

4. FPGA implementations of Basic Logical 58
Operators and Error Correction Algorithms

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Introduction to Project Design in

Quartus Software

1. Introduction

In many fields, digital designs have attracted attention from many
designers to achieve the required systems (Xia et al., 2024; Lata and
Cenkeramaddi, 2023; Sharobim, 2023). Especially, it was considered the
digital signal processing (Chen et al., 2023; Bureneva and Mironov,
2023), image processing (Wang et al, 2024; Bailey, 2023),
communication systems (Ayoub et al., 2024; Krishnamoorthy, 2022),
information systems (Ferraz et al., 2021; Devadoss and Ramapackiam,
2024) etc. The type of digital circuit is very crucial for experimental
implementations since mentioned systems require very high-speed data
processing architectures (McDonald et al, 2023; Kalomiros and
Lygouras, 2008). In many tasks the boards were preferred to implement
the proposed architectures (Ramirez-Montafez et al., 2023) while it is
used specific semiconductor devices to design digital circuits (Yuvaraja,
2023).

2. Introduction to Programming

It has been improved a few software platforms to implement digital
designs to FPGA environment and to monitor the proposed algorithms
via simulation process (Bruno and Eschemann, 2024). Thanks to these
simulation and implementation programs, some parameters such as
resource utilization can be estimated before the proposed architecture is
implemented to real time digital systems (Koch, 2012; Sklyarov, 2014).
There are two software languages to implement the algorithms to FPGA
board and to view the behavior of algorithms: Quartus and Vivado
FPGA compliers (Tlelo-Cuautle et al., 2016). In this section, it has been
a detailed explanation related to the usage of Quartus software complier.
Additionally, it is considered a topical software complier that is Quartus
IT 13.1 Web Edition.

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

]
Mgt ey Tk Y ®
Ed oo °] b A3
vex [a - 3
t Desig
o
=
-l)
Wew Project Wizora
> o | Foe iy
e vox
o |Comproten
iy °
Open Project °
e
imewwe v v
i
i
2\ sy P 7
€% New Project Wizard P
Directory, Name, Top-Level Entity [page 1 of 5]
Whatis the working drectory for this project?
C:faltera/13. 1/quartusproject (]
what is the name of this project?
first_project [
Whatis the name of the top-evel design entity for this project? This name is case sensitive and must exactly match the entity name in the design fle.
first_project [
Use Existing Project Settings...
<gack | [Newtz |[Fmsh | [cancel | [Hep

Figure-2 Project name and directory

In Figure 1, it is given a splash screen of Quartus software. As shown

in the figure, the last project files can be accessed from splash screen of

software. The New Project Wizard button can be used to create a new

project design. To create a new project, the first stage can be given as

shown in Figure 2. While the first line points out the place where the

project will be saved, the second line is filled by considering the project

name. In this project, the project name is first_project. After the location

2

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

and name of project is determined, the new project can be designed. In
the first project, a few basic applications can be reported related to
logical gates such as AND, OR, XOR, and etc. Therefore, the available
blocks in the Quartus compiler are used to implement these basic
algorithmes.

e AEE 7 o

9 Tme 10 Message

Figure-3 Block Diagram

To use the block diagram that is presented by Quartus compiler, Block
Diagram/Schematic File is selected as shown in Figure 3. This window
will open after New button is pressed. In the next stage, a schematic file
is observed as shown in Figure 4. In this window, available blocks can
be selected.

4 Quorti 152-Bit - 8 X
Fle Edt Vew Project Assgoments Processng Toos Window Help % Search altera.cor ®
USdd &« a9~ Y HGO T rF DD L PP L@

[Progect Navigator Pax| @ [a .

A complaton Herarchy FBRASGACE-OIIINNSOONY FHN a f2id 8 s 2@ 9

Dy Herwchy B|Fes & Design Units cafn
f LEEY
| | cumtomie...

Figure-4 Block Diagram/Schematic File

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

In Figure 4, a .bdf file interface is illustrated. In the screen given in this
figure, VHDL or Verilog blocks can be placed. These blocks are created
by using VHDL or Verilog description languages. Because one of the
most important issues is synchronization between blocks, the added
blocks created by using VHDL or Verilog software languages present
many advantages and flexibility in terms of timing adjusting. The proper
FPGA family can be selected for experimental applications in the
section of Project Navigator. All project designs created by using VHDL
or Verilog can be shown in this section. Addition to these, analysis
process can be monitored in the Task section which gives compilation
percentage. The settings file includes the FPGA device family. The FPGA
family contains Arria, Cyclone, Max and Starix processors. In this
window, it can be selected FPGA board which is used for experimental

systems.
L]
o x w19
DFd@ 4@ o
[Project Havigatar B8 x| seiect the famiy and deice you want to target far complation.
- support vt e stal the Tooks e
Ay cydone IVE: EPACE2F 1706 Device family Show in ‘Avalable devices' kst
L] Fomiy: [Cydna IVE | Pt [
e RS ——
ke 1115
e T Sored gades Ay
O Sy ¥ EIGTISEST) e
® oy 1 S advanced devices
. Device and Pin Optiens...
¥ Avaiable devices:
N R tame Coevokage s User1jos v g

Faska Tex PacEIMIC? LV 15408 166 516036 m
ECEISMET 12V 19408 166 51609 m
¥ | Customize... EBACEISUMIT LV 15408 165 5150% 2
| B ED=E2 2w 508258 m
EacERERCE L 220 @ 608256 1
EacERERC? LY 2w & 0825 n
EPaCEZERNS LIV e @ 60625 132
PacEzERR 10V mn w 608256 m
EPacEEDCRL 10V mn w 608256 m
EacERER? LV mm m® 608256 m
EPCEZEDZEL 1OV =0 60825 1
vi| |peEEm Lw 2 1 50825 1m
ECERFINE LV 210 154 608256 m

< >

0% 00:00:00

Figure-5 Block Diagram/Schematic File

As shown in the figures, there are many options in terms of the FPGA
board. The most efficient board can be selected among these families by
taking account for resource amount.

It must be given some theoretical framework related to basic logical
gates before the first implementation is presented in this section.

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Therefore, it can be given some information for logical gates such as OR,
AND, XOR, switching element such as Mux and register such as D-type
flip-flops.

3. An Overview of Logical Gates

In logical circuits, OR, AND, and XOR gates may be defined as basic
gates (Parr, 2013). Additionally, inverters of gates have very simple
mode. These gates are included for many complex systems such as VLSI
based electronic circuits although these operation elements have basic
structures. In specifically, they are extensively used for communication
systems which are based on VLSI to implement error correction codes
in experimental systems (Leung, 2011).

In many FPGA designs, it can be considered some important issues
such as maximum operating frequency, resource utilization (Lawal et
al., 2015). The minimum operating period of a specific implementation
determines directly maximum operating frequency. Since this operating
period also affects data processing ratio of logical elements, the gate
delay is a special and a significant term in VLSI designs (Panda et al.,
2020). Moreover, critical path delay determines maximum operating
frequency of all systems in the sequential gate design. This means that
the maximum logical path is used to define maximum system period. In
Figure 6, it is shown a schematic description for basic gates which can
be added to Quartus software (Intel-Quartus, 2018). In this scheme, OR,
AND, XOR gates and inverters of these gates is observed.

As shown in the figure, all gates excluding NOT gates have two inputs
and one output. However, some gates can include more than two inputs
in Quartus software. When it is evaluated by considering basic logical
systems, the presented gates have more than two inputs. Therefore, it
can be considered multiple inputs for basic logical gates.

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

1M [eI

W RUTPUT - OUT
iFiE | e T
2 ' i GBI B
iFid | e T
e ' i e e T
TFiE | e T
o ' Vet ST
TFE | e T
IN [it T N TV}

y) T —
e ' iy ST
e} | e T
nztd

Figure-6 The schematic presentation of basic logical gates

The basic logical gates can be defined as a truth table which observes
output case versus input signal cases. In another sections, it is given
simulation results for these logical gates. In addition to this, some
framework is described.

3.1 NOT Gate (Inverter)

Table-1 The truth table for NOT gate (Inverter)

Symbol I O
N 1 0
inst7 0 1

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

According to the truth table given in Table 1, the not gate takes the
inverse of the input. If the input bit is 1, the output takes '0". Otherwise,
the output is assigned as 1.

3.2 OR Gate

Table-2 The truth table for OR gate

Symbol I] 12 O
0 0 0

OR2 0 1 1
inst 1 0 1
1 1 1

The OR gate is one of the most known logical gates due to its simple
structure. The OR gate is given in the Table 2. As shown in the table, if
any input variable takes a logical '1', the output level is determined at
logical '1'level. If both inputs are being logical '0', the output has logical
'0' level.

3.3 AND Gate

Table 3 The truth table for AND gate

Symbol L L O
0 0 0

E : 1 ;
instl 1 0 0
1 1 1

A truth table for the AND gate is given in Table 3. Unlike the OR gate,
the output has only logical '1' level when both inputs have logical '0' level.

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Otherwise, the output is assigned as logical '0' level. Therefore, both
inputs take logical '1' since the output takes logical '1'

3.4 XOR Gate

Table 4 The truth table for XOR gate

Symbol I] 12 O

0 0 0

XORD_ 0 1 1
inst3 1 0 1
1 1 0

This gate can be used in many communication systems such as CDMA
(Code Division Multiplexing Access), Differential PSK (Phase Shift
Keying). The XOR gate consists of OR, AND, and NOT gates. The NOT
gate is integrated to AND gate. This logical gate is also defined as NAND
gate of which truth table inverts output of AND gate. If both gates are
same, the output takes logical '0'. The output has a logical '1' level if
output 1 and output 2 is different from each other.

In Figure 7, it is given an equivalent circuit to the XOR gate. As shown
in the figure, a XOR gate can be designed by using OR, AND, and
NAND logical gates.

(OR2

11
12

[—— >
[—— —

linst4 | [AND2

[QUTPUT " 0OUT

inst2

NAND2

.

inst10

Figure-7 XOR Gate

8

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

4. Introduction to Simulation

In this section, it is described the simulation process for Quartus circuit
designs. The simulation can be performed in both the Quartus compiler
and the Modelsim-Altera program using a file produced by the compiler.
This section introduces the simulation processes to be performed in the
Modelsim-Altera Program.

In order to start the simulation process in the Modelsim Altera
program, some settings must be executed in the compiler. These settings
can be given as Figure 8 to generate the simulation file before start the
simulation. As shown in the figure, the Tool name must be changed
Modelsim-Altera in the simulation section consisted of Eda Tool Setting

category.

M s @@ T wO|E S B 2|6

Setings - gtee =)

F0EEEaa 100> 8 s

S

O N W N W T Y R

Efenae =1

Figure-8 The generating of simulation file

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

i | o Cor e e Tooh_Layout|
[FUG) b Vo Compte Semulse Add Wiwe Tooh Layout(

[ot
* AW Project name
—_——

Clowe Moy, !
e |

8

8

|

IRBIRBIRBINENINNENE

File Nome: gier o [HOU P oo b
A) e |

Figure-9 Modelsim-Altera Introduction

After generate the simulation file, the Next-project is chosen at the
Modelsim-Altera Software. Afterwards, it is clicked the Add Existing File
menu to add the generated file by Quartus complier to Modelsim-Altera
Software as shown in Figure 9. Finally, the simulation process can be
started by inserting the generated simulation file.

Ha 680 View Conpih Sevie A Pojec Tooh Loyn Wendow by
[D-wwed R@o MESE| > (K] | S @m | ok pf g a

X

Exmees 1 ikt | i e | et T

Figure-10 Open the Waveform Window

After insert the simulation file, it can be performed to transfer the
objects of project for simulation process. In order to perform this stage,
file with extension of .vho inside Project menu is right clicked. Then, this

10

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

file is provided the compiling by Modelsim Altera software. In order to
observe the Objects, the project file inside Library menu is clicked.

4.1 The Simulation Stage for NOT Gate

In this section, it is given the attained simulation results related to NOT
gate. It is shown the scheme of NOT gate created in Quartus software in
Figure 11. In the last stage of simulation process, the objects name can be
obtained in opened simulation window. The simulation parameters can
be entered after these objects hold and release to Messages Menu. The IN
and OUT variables is changed wih time as shown in Figure 11. To start
the simulation, a periodical signal that can be described as a clock signal
is assigned for IN variable. Thanks to clock signal, the variation of OUT
can be smoothly tracked. As shown in the figure, IN and OUT are
inversed in each other.

Fe Edt View Comple Smulate Add Wawe Tools Layout Window Help)
0-@@=@& 1B AFDW|| SERN|| @4 4= [o PTEE 08| X % || oot pimtae
TR IR YT

Lo
| [y Iy T oy N N N T N Iy N

e L)

T — i :
T [Eme] e[A o e [

11

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Figure-12 The Literal format results for NOT gate.

In Figure 12, a type of literal format is given for NOT gate. The inverted
input signal can be observed from the output of gate.

4.2 The simulation of OR Gate

In this section, the simulation results of OR gate is presented by taking
account for truth table given in Table 2. As mentioned previously, the
output will be a logical '1' level if any input is assigned as logical '1'. In other
case, the output will be logical '0' level if both inputs take logical '0' level.

| Wave BI50
| oo M |
& out |1
$m |1] |
$mz |1
AR DU I I U L
OF2 L
IN | — ~)_' TET — ST
INZ | — o
MErent A
|| | | | | | | |
(a)
| Wave EE
1 1 1
1 1 i 1
1 0 1
(b)

Figure-14 The simulation results for OR gate (a) Logic Format (b) Literal
Format

In Figure 12, the simulation results are given for OR logical gate. In the
figure, red line defines output signal while blue and yellow lines show
input signals. As shown in the Figure, the OUT signal that presents output
signal is logical '0' level when IN1 and IN2 indicate input signals logical ‘0’
level.

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

4.3 The simulation results for AND Gate

As shown in Table 3, output of AND gate gets logical '1' level if both
inputs are logical '1' level. Otherwise, the output will be logical ‘0" level. In
Figure 15, AND gate is simulated in Modelsim waveform software.

£E| Wave s

| Wave s

(b)

Figure-14 The simulation results for AND gate (a) Logic Format (b)
Literal Format

4.4 The simulation results for XOR Gate

This simulation results are obtained for XOR gate which is designed
by using various techniques. In the first project which is given in
Figure 15.a and b, available block is used to observe the behavior of
XOR gate. Another project, which consists of OR, AND, and NAND
gates, is simulated in Figure 16.a and b. It is shown that there are

similar results for both simulations.

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

£E| Wave s
e
oo o]
$m |1]
$mz |1
-I-N-') N s AR “”,: Lol Zﬁﬁ [
% 30T L, L SUT
= T T
SRR SRR N = : SERNE FEREEE RERREE RS
(a)
8| Wave e

(b)

Figure-15 The simulation results for Quartus XOR gate (a) Logic Format
(b) Literal Format

| Wave s

14

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

M Waye ——————————————————————————————————— =t

(b)

Figure-16 The simulation results for XOR gate consisted basic gates (a)
Logic Format (b) Literal Format

References

Ayoub, H. G., Abdulrazzaq, Z. A., Fathil, A. F, Hasso, S. A., & Suhail, A. T. (2024).
Unveiling robust security: Chaotic maps for frequency hopping
implementation in FPGA. Ain Shams Engineering Journal, 15(11), 103016.

Bailey, D. G. (2023). Design for embedded image processing on FPGAs. John Wiley &

Sons.

Bureneva, O., & Mironov, S. (2023). Fast FPGA-based multipliers by constant for
digital signal processing systems. Electronics, 12(3), 605.

15

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Bruno, F, & Eschemann, G. (2024). The FPGA Programming Handbook: An essential
guide to FPGA design for transforming ideas into hardware using
SystemVerilog and VHDL. Packt Publishing Ltd.

Chen, J., Wang, B., He, S., Xing, Q. Su, X,, Liu, W,, & Gao, G. (2023). HISP:
heterogeneous image signal processor pipeline combining traditional and
deep learning algorithms implemented on FPGA. Electronics, 12(16), 3525.

Devadoss, D. K., & Ramapackiam, S. S. (2024). Fully parallel low-density parity-check
code-based polar decoder architecture for 5G wireless communications.
ETRI Journal, 46(3), 485-500.

Ferraz, O., Subramaniyan, S., Chinthala, R., Andrade, J., Cavallaro, J. R., Nandy, S. K.,
& Falcao, G. (2021). A survey on high-throughput non-binary LDPC
decoders: ASIC, FPGA, and GPU architectures. IEEE Communications
Surveys & Tutorials, 24(1), 524-556.

Intel® Quartus® Prime Standard Edition Handbook Volume 1, 2018.

Kalomiros, J. A., & Lygouras, J. (2008). Design and evaluation of a hardware/software
FPGA-based system for fast image processing. Microprocessors and
Microsystems, 32(2), 95-106.

Koch, D. (2012). Partial reconfiguration on FPGAs: architectures, tools and
applications (Vol. 153). Springer Science & Business Media.

Krishnamoorthy, R., Soubache, I. D., & Jain, S. (2022). Wireless communication based
evaluation of power consumption for constrained energy system. Wireless
Personal Communications, 127(1), 737-748.

Lata, K., & Cenkeramaddi, L. R. (2023). FPGA-Based PUF Designs: A Comprehensive
Review and Comparative Analysis. Cryptography, 7(4), 55.

Lawal, N., Lateef, F., & Usman, M. (2015, June). Power consumption measurement &
configuration time of FPGA. In 2015 Power Generation System and
Renewable Energy Technologies (PGSRET) (pp. 1-5). IEEE.

Leung, B. (2011). VLSI for wireless communication. Springer Science & Business Media.

McDonald, C., Abrudan, T. E., Cabral, F, Kucera, S., Claussen, H., Farrell, R., &
Dooley, J. (2023). FPGA implementation of a sub-400ns 6G free-space optical
wireless communications transmitter. Optics Express, 31(16), 25933-25942.

Panda, A. K., Palisetty, R., & Ray, K. C. (2020). High-speed area-efficient VLSI
architecture of three-operand binary adder. IEEE Transactions on Circuits
and Systems I: Regular Papers, 67(11), 3944-3953.

16

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Parr, E. A. (2013). Logic designer's handbook: circuits and systems. Elsevier.

Ramirez-Montanez, J. A., Rangel-Magdaleno, J. D. J., Aceves-Fernandez, M. A., &
Ramos-Arreguin, J. M. (2023). Modeling of Particulate Pollutants Using a
Memory-Based Recurrent Neural Network Implemented on an FPGA.
Micromachines, 14(9), 1804.

Sharobim, B. K., Yacoub, M. H., Sayed, W. S., Radwan, A. G., & Said, L. A. (2023).
Artificial neural network chaotic PRNG and simple encryption on FPGA.
Engineering Applications of Artificial Intelligence, 126, 106888.

Sklyarov, V., Skliarova, I., Barkalov, A., & Titarenko, L. (2014). Synthesis and
Optimization of FPGA-based Systems (Vol. 294). Springer Science &
Business Media.

Tlelo-Cuautle, E., De La Fraga, L. G., & Rangel-Magdaleno, J. (2016). Engineering
applications of FPGAs. Engineering Applications of FPGAs.

Wang, X., He, X., Zhu, X., Zheng, F., & Zhang, J. (2024). Lightweight and Real-Time
Infrared Image Processor Based on FPGA. Sensors, 24(4), 1333.

Xia, H,, Yu, X., Zhang, J., & Cao, G. (2024). A Review of Advancements and Trends in
Time-to-Digital Converters Based on FPGA. IEEE Transactions on
Instrumentation and Measurement.

Yuvaraja, S., Khandelwal, V., Tang, X., & Li, X. (2023). Wide bandgap semiconductor-
based integrated circuits. Chip, 100072.

17

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Error Correction Algorithms: An
Introduction to Previous Works,
Theoretical Analysis and

Implementation

1. Introduction

Communication systems have evolved over time to meet user
demands such as high-speed data transmission (Krishna et al., 2021),
coverage area (Arum et al.,, 2020), service continuity (Barzegar et al.,
2020) etc (Wei et al., 2022). For this reason, new algorithms have been
developed to solve communication problems (Liu et al., 2024; Dai et al.,
2020) and to improve transmission performance (Liang and Wang,
2020). Especially thanks to wireless communication systems, data
transmission has become easier in places where physical cable
installation is difficult (Ramalingam and Shanmugam, 2022). One of the
most significant disadvantages of wireless data communication in the
free space environment is noise due to interference of signal with
undesired frequency. The differences between transmitted and received
bits in systems affected by noise have led to the definition of the term bit
error rate in communication systems. This noise can be generally called
AWGN (Additive White Gaussian Noise) in communication systems
(Liu et al, 202) and can be generated and added to evaluate the
performance of systems in communication simulations. If the difference
between received and transmitted bits increases, Bit Error Rate (BER) of
the transmission system will increase. Otherwise, the system’s
performance will decrease. A sample bit error rate can be given in Figure
1.

18

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

10" : : ; ;

10-5 L 1 1 1
10 11 12 13 14 15

SNR (dB)

Figure 1. A BER performance for 2-PPM transmission scheme

In Figure, a BER simulation is represented for 2-PPM transmission
scheme generally used in optical communication systems. According to
the figure, the system requires 13dB Signal-to-Noise Rate (SNR) at the
BER performance of 10~. To decrease this BER, signal power can be re-
adjusted. Therefore, as shown in the figure, the BER decreases while the
SNR increases.

It is incredibly significant the providing of impeccable data transmission
when the data transmission is performed over a communication
channel. Therefore, the incorrect bits can be corrected by using
improved methods for communication systems (Moon, 2020). These
methods can be referred to error correction codes (Clark and Cain,
2013).

19

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Error correction algorithms provide a control unit for data bits while
transmitting redundant bits and data bits. Although the transmitting of
redundant bits can decrease the data rate of communication system,
they are used to correct the false bits (Yin et al., 2024). If the incorrect
bits can be corrected by using an error correction method, transmission
performance will be enhanced by decreasing the difference between
received and transmitted bits. Although there are many error correction
schemes (Chowdary et al., 2023; Ke, 2024), a simple error correction
scheme can be given in Figure 2.

Transmitter

n

k
Data — Encoder =~ —4— Modulator

Channel

Receiver

Data - Decader anc 471(; Demodulator

A Correction

Figure 2. A Basic Error Correction Scheme

In Figure 2, the data is represented as transmitted message bits. The
message bit’s length is equal to n bit which is variable in terms of the
type of error correction algorithm. The encoder block adds redundant
bits to output of data block to shape transmitted signal. The length of
data obtained from output of encoder is equal to k. This signal can also

20

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

be called encoded bits. After the coding stage, a modulation process is
performed to transfer message signal to communication channel (Yang,
2018; Ryan and Frater, 2002). The transmitter can be considered as a
unit where the whole encoding and modulating process can be carried
out. In addition to this, the communication channel can be defined as
wireless or wire-line medium where noisy signal is added to modulated
signal.

The demodulator unit aims to the detecting of bits which are applied
on modulator unit at the transmitter side. Hence, the demodulator can
be considered as one of the significant units of the Receiver. The bits
with length of k are passed through Decoder to correct the error bits
and to remove redundant bits from received bits. In the final stage, the
data can be obtained with n bits. An error correction process is shown
in Figure 3.

Transmitted

Transmission

Received

Sekil 3 An Error Correction Process

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Transmitter Receiver
Data Bits Remove
Redundancy Bit
dy dy....d, :

Y
Generator

Matrix A

Error Correction

Error Detection
a() al an

A

Redundancy bits Data Bits
Figure 4. Redundancy Concept

As shown in Figure 3, the transmitted bit vector is "10110100" that
consists of 8 bits. However, the received bit vector is obtained as
"11110100" after the transmission process. It is shown that there is a bit
error in received bit vector due to data transmission. This case can be
defined as a single bit error. To detect single bit error in received bit
vector, one of the simplest error detection methods is parity check or
Vertical Redundancy Check (VRC) algorithm in the literature. In
addition to this method, Longitudinal Redundancy Check (LRC), Cyclic
Redundancy Check (CRC), and hamming coding (Sunshine, 2013;
Agarwall and Tayal 2009) can be used to detect or correct bit errors in
communication systems. These algorithms consist of variable
complexity architecture due to their different theoretical framework. A
redundancy idea must be applied for mentioned techniques
(Subramanyam, 2005). The redundancy concept can be given in Figure
4.

2. Vertical Redundancy Check

The Vertical Redundancy Check (VRC), which is also referred to parity
check, is one of the most basic error detections. This technique detects

22

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

error bits when the number of incorrect bits is odd. This is one of the

most significant disadvantages for Vertical Redundancy Check. A

sample Vertical Redundancy Check algorithm can be given as shown in

Figure 5 (Subramanyam, 2005).

(b)

23

Determine the
1011000 parity bit
Parity Bit
(Even)
Add parity bit to]
ol —10 1 1000&/1
Parity bit
(a)
Receive
Bits
Determine the
10110001 parity bit
Parity Bit
(Even)
Remove the Compare with
Parity Received Parity
¢ Received
Accept/ Data
Reject ’

Repeat
request

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Figure 5. A block diagram for VRC algorithm. (a) The transmitter side.
(b) The receiver side

Figure 6. A simple architecture for generating of Parity Bit

In Figure 5 (a), the first stage is determining of parity bit to make a
decision related to transmitted bit. The data bit must be transmitted with
parity check bit to detect error bit at the receiver side of which structure
is given in Figure 5 (b). The receiver determines the parity bit by taking
account of the received data bit. Comparing parity bit with data bits, it
makes a decision whether the received bit can be accepted. To generate
the parity bit, an architecture is given in Figure 6. As shown in the figure,
the architecture is based on XOR gates. This structure is referred to even
parity scheme.

3. Longitudinal Redundancy Check

To determine the location of error bit, it is improved a two-dimension
Vertical Redundancy Check architecture called Longitudinal
Redundancy Check (LRC). This technique has a complex structure

24

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

compared to VRC due to its row length (Gupta, 2006). A sample LRC
structure can be given as shown in Figure 7.

o 1. 0 o 1 o0 O

Figure 7. A LRC sample of data structure

1111111

4. Hamming Coding

Hamming codes are one of the linear block codes to use to improve the
transmission performance of communication system in terms of bit
error rate (Desourdis, 2002). Hence, this linear code type has attracted
the attention from many researchers in literature. This is because this
coding scheme has a very simple algorithm which allows to add error
correction codes to data bits.

If m is defined as the number of data bit that will be conveyed through
a communication infrastructure, the number of encoded bits k with
using hamming method can be expressed as 2™-1-m. If n is equal to 2™-
1, this hamming system can be defined as (n,k). The hamming systems
can be arrayed (7,4), (15,11), (31,26) and etc. In this section, we give
(7,4) hamming coding (Roman, 1992).

A generator matrix is required to code data bits by using Hamming
technique. The generator matrix consists of a kxk size of Identity Matrix.
An Identity Matrix for k of 4 can be given by

25

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

1000
0100
0010
0001

Ik = (1)

The generator matrix G can be obtained by using a matrix of 4x3 and
Identity Matrix Ii. Identity matrix and Aw..« matrix can create a sample
generator matrix which can be expressed by (Neubauer et al., 2007),

011
101
Mok =| 1 1 g (2)
111
G=(Ig|n) 3)
1000|011
0100[101
G= (4)
0010110
0001]111

where, G matrix of which size is kxn created by Ix and matrix of An
(Roman, 1992). According to encoding procedure, encoded bits, which
are given in Figure 2 at the input of modulator, are obtained by
exclusive-or (XOR). The encoding process can be given as follows:

c=dG (5)

26

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

1000011
0100101

Cop C1 Cp C3CyC5Cq |= dod1d2d3 0010110 (6)
i 0001111

where, c and d are defined as encoded and data bits, respectively. The d
and G matrix are passed through exclusive-or gates. In Equation (5), the
c and d matrix have 7 and 4 elements, respectively.

Co :do
Cl :dl
Co :d2
Cs =d3 (7)

C4 :dl) d2) d3
C5 =d0 @D d2 ® d3
C6 =do ® dl &) d3
According to equation (7), do, di, d2, and ds bits are directly equal to
encoding bits of co, ¢1, ¢, and cs. In decoding side, these bits will be

directly assigned to data bits if error matrix is equal to 0. The c4, ¢s5, and
Cs bits are obtained by using X-OR gates as shown in Figure 8.

27

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Figure 8. A simple XOR architecture for encoded bits of ¢4, ¢s, and cs.

In the decoder side, it is used an error correction and detection matrix,
which is defined as parity-check matrix, by taking account for the type
of Generator matrix. This matrix can be given by

.
Fi:(ka_k|ln_k) (®)
0111
Monk=|1011 9)
1101
0111100
H={1011010 (10)
1101001

28

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

It must be transposed matrix given in Eq. (10) to achieve the error
matrix. To detect error, the encoded bits are multiplied by matrix of H'.
The error matrix can be defined as follows:

011
101
110
_cHT =
(rorlrz)—CH —(CO Cq C» C3 Cy4 Cg CG) 111 (11)
100
010
001

I’O =C1®C2 @C3@C4
I’1:CO @CZ ('903 (‘DCS (12)
I, =Cqp ®C1®C3®C6

Table 1. r matrix versus Error Bit

Error Bit [ro 11 12]
Co 011
Ci 101
C 110
C3 111
C4 100
Cs 010
Cs 001

In Equation 12, r matrix is defined as error matrix. To detect errors
among the ¢ matrix, it takes account for 1o, r; and r» values. For example,
if [ro r1 12] is equal to [0 1 0], the encoded bit of ¢s is inverted. Therefore,
bit error rate performance can be improved by detecting and correcting
received bits. As shown in Figure 6, hamming coding is applied on PPM

29

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

transmission scheme. In addition to this, a table can be given for
correction of error bits. In table 1, a mapping is presented to correct the
error bit in terms of [r, r; 2] values.

101 : : : :

—-=-PPM
-e~PPM+Hamming

10724

w 103

10

10°
10 11 12 13 14 15

SNR (dB)
Figure 9. BER performance for 2-PPM with Hamming code

In Figure 9, a bit error rate performance has been given for 2-PPM
system. The red line result observes BER performance by using
Hamming technique. Other plotting has been obtained by using
traditional receiver system. As shown in the figure, the Hamming
method can correct the incorrect bits.

30

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

References

Agarwal, B. B., Tayal, S. P. (2009). Computer Network. India: University Science Press.

Arum, S. C,, Grace, D., & Mitchell, P. D. (2020). A review of wireless communication
using high-altitude platforms for extended coverage and capacity. Computer
Communications, 157, 232-256.

Barzegar, H. R., El Ioini, N., & Pahl, C. (2020, April). Wireless network evolution
towards service continuity in 5G enabled mobile edge computing. In 2020
Fifth International Conference on Fog and Mobile Edge Computing (FMEC)
(pp. 78-85). IEEE.

Chowdary, M. K., Turaka, R., Alabduallah, B., Khan, M., Babu, J. C., & Kiran, A.
(2023). Low-power very-large-scale integration implementation of fault-
tolerant parallel real fast fourier transform architectures using error

correction codes and algorithm-based fault-tolerant techniques. Processes,
11(8), 2389.

Clark Jr, G. C, & Cain, J. B. (2013). Error-correction coding for digital
communications. Springer Science & Business Media.

Dai, L., Jiao, R., Adachi, E, Poor, H. V., & Hanzo, L. (2020). Deep learning for wireless
communications: An emerging interdisciplinary paradigm. IEEE Wireless
Communications, 27(4), 133-139.

Desourdis, R. 1. (2002). Emerging Public Safety Wireless Communication Systems.
United Kingdam: Artech House.

Gupta, P. C. (2006). Data Communications and computer networks. India: PHI
Learning.

Ke, X. (2024). Error-Correction Coding. In Handbook of Optical Wireless
Communication (pp. 581-613). Singapore: Springer Nature Singapore.

Krishna, C. M., Das, S., Nella, A., Lakrit, S., & Madhav, B. T. P. (2021). A micro-sized
rhombus-shaped THz antenna for high-speed short-range wireless
communication applications. Plasmonics, 16(6), 2167-2177.

31

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Liang, R., Zhao, L., & Wang, P. (2020). Performance evaluations of LoRa wireless
communication in building environments. Sensors, 20(14), 3828.

Liu, Y. E, Chang, T. H., Hong, M., Wu, Z., So, A. M. C,, Jorswieck, E. A., & Yu, W.
(2024). A survey of recent advances in optimization methods for wireless
communications. IEEE Journal on Selected Areas in Communications.

Liu, Z., Liu, J., Zeng, Y., & Ma, J. (2020). Covert wireless communication in IoT
network: From AWGN channel to THz band. IEEE Internet of Things
Journal, 7(4), 3378-3388.

Moon, T. K. (2020). Error correction coding: mathematical methods and algorithms.
John Wiley & Sons.

Neubauer, A., Freudenberger, J., Kuhn, V. (2007). Coding Theory: Algorithms,
Architectures and Applications. Germany: Wiley.

Ramalingam, S. P, & Shanmugam, P. K. (2022). A comprehensive review on wired and
wireless communication technologies and challenges in smart residential
buildings. Recent Advances in Computer Science and Communications
(Formerly: Recent Patents on Computer Science), 15(9), 1140-1167.

Roman, S. (1992). Coding and Information Theory. Germany: Springer.

Ryan, M. J., & Frater, M. (2002). Communications and information systems. Argos Press
P/L.

Subramanyam, M.V. (2005). Switching Theory and Logic Design. (2005). India: Laxmi
Publications Pvt Limited.

Sunshine, C. A. (2013) Computer Network Architectures and Protocols. United
Kingdom: Springer US.

Wei, Z., Wang, Z., Zhang, J., Li, Q., Zhang, J., & Fu, H. Y. (2022). Evolution of optical
wireless communication for B5G/6G. Progress in Quantum Electronics, 83,
100398.

Yang, S. M. M. (2018). Modern digital radio communication signals and systems.
Springer.

Yin, P, Chen, H., Xia, Y,, Zhang,], Liu, M., Gu, C,, ... & Tang, F. (2024). High Logic
Density Cyclic Redundancy Check and Forward Error Correction Logic
Sharing Encoding Circuit for JESD204C Controller. IEEE Transactions on
Circuits and Systems I: Regular Papers.

32

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Simulation Resultsfor Digital Designs

The FPGA board is used to process data at high-speed switching in
many projects (Khedkar and Khade, 2017; Luo et al., 2024; Nagar et al.,
2024). In simulation stage, one of the most important issues is the
proposed algorithm which is designed for specific tasks. There is a
specific period for algorithms which are designed by using any language
(Xu et al., 2024; Zhang et al., 2024). Since the period of algorithms can
be variable in terms of data processing rate, different algorithms that
give same output can be created in software programmer (Hussain and
Sarkar, 2024; Hong et al., 2023).

Some experimental systems have been created at gate-based systems
which are called VLSI (Very-Large-Scale Integration) (Lin et al., 2015;
Lin et al., 2016). In these systems, the data processing rate of system is
determined considering the longest path by the compiler (Yuan and
Parhi, 2013). Specifically, many researchers focus on the design of error
correction codes by using VLSI technologies due to their high-speed
data processing rate (Naveen et al., 2023; Singh et al., 2023; Masera et

33

mehmet
Textbox

mehmet
Textbox
Simulation Results for Digital Designs

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

al., 1999). Compared with FPGA board, VLSI-based systems have more
complex structures in terms of experimental systems.

In the previous sections, the applications of the blocks in the Quartus
software environment are given. In addition to this, a theoretical
framework is presented related to error correction algorithms. Since it
is quite difficult the modifications of the codes of the blocks used in the
Quartus program, designers have proposed inflexible algorithms.
Firstly, it is very important to use the control panel to ensure
synchronization in block based digital designs. It is not needed to use a
control panel by using pipeline blocks which utilize appropriate number
format. This format can be referred to as decimal number format.
However, floating point-based blocks that are available in Quartus
software require the use of a control panel to be complex. If floating
point-based blocks are designed by using VHDL while considering the
pipeline system, an output signal can be obtained at each clock signal.

In this section, VHDL code architectures, firstly, are given related to a
counter and a comparator. Then, the design of an accumulator block is
represented to express the integral operation. Additionally, a Linear
Feedback Shift Register (LFSR) and Hamming coding system is given to
introduce the random process and the error correction systems.
Specifically, the LESR system can be used to generate noise in wireless
communication systems. These systems are designed by using VHDL
code structure. The hamming code structure consists of a few VHDL
based code systems. However, these blocks can be combined with each
other by using VHDL codes. In this section, we give a combination of
VHDL blocks to design Hamming code architecture. In addition to this,
some simulation results can be given related to the encoding and
decoding process. At the first time, an introduction is given according
to basic VHDL code architecture.

1. Introduction to VHDL

In this section, it is given a basic VHDL code structure. The VHDL
code structure mainly consists of three sections (Pedroni, 2020): The

34

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Library, Port definition and code section. In the Library section, related
libraries are called to compile the VHDL code. In the code section, start
and outcome variables are added to define the specific operation. This
section determines the type of code operating, such as sequential
operations.

LIBRARY ileee; |
USE ieee.std logic 1164.all; Library

= ENTITY name IS5
=PORT (Port Definition
END name;
sARCHITECTURE converter OF name IS
> Architecture

=sBEGIN
END converter;

= O W o Jo s W=

[

Figure 1. VHDL code structure

1.1. Counter

Firstly,a VHDL code structure is given to design a counter block. The
counter block is commonly used for many systems, such as ROM
applications and signal processing implementations. In ROM
applications, the counter is utilized to point out the address line of
related memory block. As shown in Figure 2, a VHDL code structure is
presented for counter blocks.

35

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

1 LIBRARY ieee;

2 USE ieee.std logic lleg4.all;

3 [CJENTITY counter IS

4 ElECET |

S clk: TN STD LOGIC: n: in integer range O to 50;
o counter: buffer integer range 0 to 50);
7 END counter;

8 HARCHITECTURE behwv OF counter IS

9 ElzEGIN

10 EFRCCESS (clk)

11 | BEGIN

12 EIF (clk'EVENT LMD clk="l1') THEN

13 [g if counter=n then

14 |— counter<=0;

15 [F] e=lsze=

le counter<=counter+l;

17 end if:

18 end if:

15 END PROCESS;

20 END behv:

Figure 2. VHDL code for counter block
1.2. VHDL to Block Scheme and Simulation Setup

In addition to available blocks in Quartus software, a block scheme
can be created by using VHDL or Verilog in compiler environment. In
another definition, VHDL code structure can be converted to .bdf file.
This process will provide flexibility conditions to design specific
architecture created by users. To implement this .bdf file to designs, a
starting window can be given as shown in Figure 3.

36

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Figure 3. VHDL to .bdf

To start the conversion process, Create Symbol Files for Current File as
shown in Figure 3. Afterwards, as illustrated in Figure 4, it is shown the
created block scheme in .bdf file. This figure represents the counter
blocks scheme which consists of the VHDL code given in Figure 3.
Block Project menu consists of these block schemes.

{2 symbol x

Libraries:

v [Project
£} counter
€3 cfaltera/13. 1/quartus/librariesf

counter(3..0]

Name:

|cuunter

[] repeat-insert mode
[] Insert symbol as block

aunch MegaWizard Plug-In

MegaWizard Plug-In Manager...

Figure 4. VHDL to .bdf

According to VHDL code given in Figure 2, this block has one input
and one output signal as clock signal and counter. Since the counter
output is defined between 0 and 20, the number of bits is determined as

37

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

5. In Figure 5, it is an image of which pin is assigned by an automatic
pin assignment method in Quartus complier. In the figure, the
expression of counter [4..0] indicates the counter output being 5 bits.
The simulations given in this section are created by using Vector
Waveform File simulator where is located on Modelsim-Altera program
which is combined to Quartus software. To open the Vector Waveform
File, it must be chosen as the Vector Waveform File button where it is
placed in the menu bar.

counter[5..0) ¢

t n[5..0]

Figure 5. Input and output signals for Counter block

$a Objects s—— H & x| | pm|Wave -Default

|| - [Meas | — ~
3] 4 counter Ui | M Define Clock %
Clock Name
© 4 Object Declaration
EET ’ [sim:/fproseLi

veo Add »

unknawn Edit L3 offset Duty

devoe View 4 —'\' [o [s0

:fudm iy R)

levpor - Format » Period Cancel
e | P ——— [zoood I
Combine Signals...
4§ Processes (Active) — = H ? x| Growp... -
Type (= Ungroup
5 | Omem = ==
> Force...
First Edge
> NoForce g
2 Clodk.. @ Risng © Faling
4 Properties...
L4 ok | cancel
L
L B
-] cursor 1 | 0os |

Figure 6. Starting of Vector Waveform File simulation (10000ps)

38

FPGA-Based Architectures

: An Introduction to Experimental Designs with VHDL

ﬂ Wave - Default

= &v =
- Msgs
& g [+ 4% counter U..
= 4 counter &k u
& ok X E——
[—— Obiect Dedaration
Object Dedaration
Add 4
— Edit v
Edit View »
View
Radix >
Radix Global Signal Radix... Format »
Format ol
Symbalic Combine Signals. ..
Combine Signals... Binary Group
Group... Octal Ungroup
Ungroup Decimal
> Unsigned Force...
oree...
s Hexadedmal MoForce
oForce
ASCIT Clock...
Clack...
Time Properties...
| Properties... Fixed paint... I ——
it Cursor1 | Ops Numeric Enums I I
J _Iﬂ L" Symbolic Enums | \/
M Force Selected Signal x
Signal Mame: |31m: /fpro/n
value: [L00100
Kind
& Freeze © Drive Deposit
Delay For: [0
Cancel After:
oK Cancel

Figure 7. Adjusting of input and output for simulation

To plot the waveform, a clock signal must be assigned by taking
account of frequency value. The clock signal has square wave form.
During the clock time, the whole code line is processed. As shown in
Figure 2 and Figure 3, upper counting is carried out at each clock signal.
Hence, it must be assigned a frequency and type of clock signal to
observe the simulation results. In Figure 6, firstly, a clock signal of which
frequency is adjusted as 10000ps (10ns) is defined. Additionally, the clk
input must be defined as clock signal in Define Clock Window.

In simulation stage, another process is assigned input and output as
shown in Figure 7. For counter implementation, the » input indicates
the upper limit of counter block. Hence, this available is very significant
in this experimental system. The output of counter will give sequential
number up to n value. In order to correct the output of counter, the

39

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

number format of output can be changed with another number format.
In this implementation, the radix format is selected.

+ vb counter [26 33 |34 35 36 1

@ dk 1

36

=@ £
Figure 8. The simulation result for counter block

As shown in Figure 8, the counter output rises to 36. Then, it is made
reset to re-count the counter block. The clk, which is called clock signal,
has literal form and 50% dimming level.

1.3. Accumulator

The accumulator can be used to determine integral results for any
system such as signal processing and communication systems. For
example, communication systems have utilized the accumulator to take
the integral of received signal during one symbol transmission. In these
systems, the accumulator adds input signal with output signal at each
period. The added signal is transferred to the next block at the end of
the period. Finally, the output of the accumulator is cleared to
implement the new signal. In this section, it has been given two
accumulator designs. The first block continuously generates output
signal. Output of others is only activated at the end of the period.

clk o[10..01 4

pdsts[7..0] counter[5. 0] §

b 7.0

Figure 9. Accumulator block

Appendix Al represents a VHDL code structure for accumulator block.
After this code is converted to .bdf file as shown in Figure 9, compiled
design can be simulated by using University Program VWF added to

40

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Quartus 13 software. The VWF file can be created with a new section
given in Figure 10.

%g' MNew . g

i

Mew Quartus II Project

4 Design Files
AHOL File
Block Diagram/Schematic File
EDIF File
Qsys System File
State Machine File
SystemVerilog HOL File
Tcl Script File
Verilog HOL File
WHOL File

4 Memary Files
Hexadedmal (Intel-Format) File
Memory Initialization File

4 Verification/Debugging Files
In-System Sources and Probes File
Logic Analyzer Interface File
SignalTap II Logic Analyzer File
|University Program YWF

4 (Qther Files
AHDL Include File
Blodk Symbol File
Chain Description File 4
Synopsys Design Constraints File
Text File i

»

m

[0K][Cancel H Help l

Figure 10. Introductions to Simulation in Quartus 13

41

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

File View Smuaton Hep 5 Search altera.com @
(G % oeete el } XE XE |82 0 2

2 e]

Insert Node or Bus g!

Mast] Insert > Insert Node or Bus... |..,,: 5.3ne G ol -

| Value L

G v | 160.0ms 320,015 s00ns| Mome e]

Reverse Group or Bus Bit Order : [:“”'

Radix 3

(&
b

Grid Size...

SetEnd Time...
v Snap to Grid

Snap to Transition

T Properties...

{4 Node Finder
Named: =
Lookin: =
NodesFm.lnd:] Selected “°"°’ [Stertnode search |
Mame Type Name Type

A v
AEME

Insert & new node or bus

RlType ID Message

Figure 11. Introduction to Adding variable to VWF file

As observed in Figure 9, there are three inputs and two outputs signal
for accumulator block. To make a simulation versus time axes, these
inputs must be added to the VWF project simulation file. Hence, the
Node Finder will be operated from Insert Node or Bus box. The input
and output signals are added to the VWF file from the opened window
of Node Finder.

When considering the project complexity, variable project time can
be created by using the Set End Time button added in Edit menu. This
is a very significant setting to observe whole simulation timing.

42

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

€4 Simulation Waveform Editor - C/altera/13.1/p
Fle [Edt] view Smuaton Hep %)

: [E K Delete Del
Nk Insert »
= Value »
Grouping 4
Reverse Group or Bus Bit Order
in Radix
o o)
& Grid Size...
55 Set End Time...
ou | ¥ Snap to Grid
&8 3
Snap to Transition
9§
& Properties...
Figure 12. Adjust to the simulation length
Name Value at
Ops
Radix: [unsigned Decimal -
li:n>— dk EO Start value: 20
B b data uz Incrementby: | |
B b B 00000000 Count type
T B 3000000000 @ Binary
2 b counter B XXXHKX © Gray code
Transitions ocour
Countevery: 50.0 ns «
| ok | [Cancel]

Figure 13. Assign to constant values

43

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

|
o _Bnnnnnnmmu ‘ 1111410100001 10000 ¥ 110011)000 1141011001

2 counts = Pel Pyboat11)po1000)po 1001,

Insert Mode or Bus. ..

Grouping 4

Reverse Group or Bus Bit Order

Radix r Binary

gﬁ Properties... Octal

Hexadecimal
Signed Decimal
Unsigned Decimal
Fractional

ASCII

Figure 14. Change to number format

ns 960.0 ns 1.0us 1.04us 1.08us 1.12us 116 us
Name Value at | | ' 0 v 0
50.0ns
5 I | | | | | | | | | |
8o 19 4 20 4 1 4 2 4 3 }
B b data U2z 6 b 58 b 50 b 52 b 54 b 5
B pon u20
Moo U0 72 . Y 780 b &0 b4 122 ¥ 186 Y
(a)
2.8us 2.84us 2.88us 292us 2.96us 3.0us
Name Value at | f ' h h |
50.0ns

5 | | | | | | | | | |

2 b lounter U1 A N (" YR

s b data u22 ST EDSETEE ST D D ST

B pon uz0

M oro u20 1340 M A 58 W 194 e 332 }

2048+58 2048+194

(b)

Figure 15. Simulation results for Accumulator. (a) non-overflowing
case (b) overflowing case

44

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

In the last section of adjusting the parameter, it is assigned to constant
values and changed to number format from simulation results.
According to the accumulator block scheme and VHDL code given in
Appendix A-1, a constant value is determined as using period
parameter. This parameter is defined as n in both block scheme of
accumulator and Figure 13. The number format of final output, which
is referred to variable of o, can be changed to observe by using decimal
format instead of binary format in Figure 14. Additionally, the counter
variable counts to n value in VHDL code of accumulator block. It is
shown that simulation results provide the code structure as shown in
Figure 15 a. which represents non-overflowing case of output signal.
However, Figure 15 b observes an overflowing case since the output is
insufficient bit size. After output of 1972, the output signal o must get
2016. However, it is limited since its bit size is equal to 11 bits.

1.4. LFSR

The LFSR is used for many signal processing implementations including
encryption of the data (Wu et al., 2018; Win and Kyaw, 2008), generation
of noise (Babu and Anand, 2020; Hazwani, 2014). Although there are
several types of LFSR, the complexity of LESR increases when its order
rises. A LFSR VHDL code structure is given in Appendix A-2.
According to this VHDL code, 16-bit LESR is implemented to observe
the behavior of LFSR architecture. Additionally, it has been seen that the
LFSR structure consists of XOR block which is one of the simplest logic
gates. In Figure 16, it is given a LFSR block scheme created by using this
code. As shown in the block scheme, LESR output has 16 bits which are
encoded by using XOR gates. The encoded process is realized during
one clock signal which is defined as input of clk.

Figure 16. LFSR Block Scheme

45

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

T— ns].GO.IO ns 2DU.ID ns 240:0 ns 2

Ops

n B0

O B 0000000000, ’(0011110001011001 X 0111100010110011 1111000101100110)C
,\'DRzCF X0 =@ XOR='1"

A

Figure 17. The simulation result for LFSR Block Scheme

In Figure 17, a simulation result for LFSR block scheme is plotted in
Simulation Waveform Editor added in the Quartus 13.1 complier. The
first bits are "0011110001011001" to encode by using LFSR. After XOR
process of 16", 14, 13, and 11" bits, the new bit sequent is obtained as
“0111100010110011". When investigating in terms of theoretical
framework, it is considered that simulation results have a valid bit
sequent.

1.5. The simulation results for Hamming Encoder and Decoder

This section gives hamming encoder, hamming decoder, and error
generator blocks. The error generator block is required to observe the
performance of hamming decoder block. The encoder and decoder
blocks are designed by using matrix form given in previous chapter.
Both theoretical framework and simulation stage consists of (7,4)
hamming code architecture. In Figure 18 a and b, it is given a hamming
architecture.

46

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

- hamming_encoder
[dataf3..of o data[3..0] 0[6..0] LRI —— 0[6..0]
inst
error
enc_data6..0] err_data[6..0] ["”TP“T > err_data[6..0]
& number(2..0] B L e namber2..0]

instl

hamming_decoder

bt data_in[6..0] data_out[6..0] JOUTRIT ["data_ou(6.0] |
e[2..0] UTBUT [e[2..0]]

inst2

()

hamming
[system_data3..0] > WNBUT sy stem_data[3..0] encoded_data[6..0] UTRUT _—— encoded_data[6..0] |
| e_num[2..0] | — e_num[2..0] error_data[6..0] QUIPUT [error_data[6..0]
corr_data6..0] LTPUT [corr_data[6..0]
e_num_bin[2..0] UTPUT % e_num_bin[2..0]
inst

(b)

Figure 18. The block schemes for Hamming Encoder, Decoder, and
Error generator.

valoe ot lws 80.0ns 160,05 240,005 320,05
Ops 0ps
B b B 0001 0001 X 1100 X 110§ oo ¥ oo1x X 1110 X o001 x

& o, B 1100001 1@pooor ¥ 100100 X 0011110 ¥ 110fk10 X @uioorn ¥ ooirsfp X 10ifhor x
By b e_number US s X3 XTol X3 e X 1 X3 %
4 b er_data B 1000001 1@booor ¥ 1wofioo X o011 X 110@i10 X @001y X oo11sfp X 1oufor x
& ooe 8010 [GETED GETED GETTED SR HD GETTHD SETHD -
data_out B 1100001 1fpooor X 100@ioo X ooii11f) ¥ 1100010 X @uwoo1r X ooiiifp X 1o0ifuor x

(a)

@

47

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

lo ps 80.0ns 160.0 ns 240.0ns 320.0ns
Name va;:sat Bps i] [[
e b system data B 1010 1010 X 0000 X 100 X 1m0 X 1000 X 0010 X 100 X
4 b encoded data 50101010 || ofpw010 ¥ oooooof) ¥ 1oo0ifpo ¥ oofric ¥ 1111fpo) wifpo ¥ woifps f
B b e_num us G GEED GEFINE GECED SR 1D GREYD 6N

o 0001010 | f_0@p1010 X oosooo ¥ 100ifpo ¥ oofiiic ¥ 1111@po X woifpio X 1o0ifpo X
24 b erumbn B0 00 X 10 X o1 X o010 11 X om X

4 b cor_data B 0101010 1010 £ 00000 10010 ¥ oofriio X 1111fpo X 101p10 X 10010 X

(b)
Figure 19. The simulation results for Hamming Technique. (a)Encoder,
Decoder, and Error generator. (b) the simulation result for hamming
block

In Figure 19 a, it is given simulation results for Hamming encoder,
decoder, and Error generator defined in Figure 18 a. According to
simulation results, error generator takes inverse of one bit for output of
Hamming encoder block. For Hamming code of "1100001" and
e_number of 5, e output takes "010" value. In the previous chapter, "010"
is located in 5™ line of matrix as expressed in Equation 11. Hence, 5" bit
of err_data is corrected by hamming method as shown in Figure 19 a.
Similar results are obtained in Figure 19 b where Encoder, Decoder and
Error generator are combined in a one block scheme. This project can
be achieved by compiling Hamming VHDL code in Appendix A-3.
However, the project must consist of all VHDL files of Appendix A-3.

48

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Appendix A-1:
Accumulator

LIBRARY ieee;

USE ieee.std_logic_1164.all;
ENTITY accumulator IS

PORT (

clk: IN STD LOGIC;

o: OUT integer range 0 to 2000;
counter: buffer integer range 0 to 50;
data,n: in integer range 0 to 255);
END accumulator;
ARCHITECTURE acc OF accumulator IS
BEGIN

PROCESS (clk,data)

49

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

VARIABLE agen : INTEGER :=0;
variable d: integer :=0;

BEGIN

IF (clkEVENT AND clk="1") THEN
if counter=n then

counter<=1;

d:=data;

else

counter<=counter+1;

d:=data+d;

end if;

end if;

o<=d;

END PROCESS;

END acgc;

Appendix A-2:

LESR

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY LESR IS

PORT (

clk: IN STD_LOGIC;

0: OUT std_logic_vector (15 downto 0));
END LFSR;

ARCHITECTURE fib_nc OF LFSR IS
Signal i: STD_LOGIC_vector (15 downto
"1100111100010110";

Signal data: STD_LOGIC;

BEGIN

PROCESS (clk)

--VARIABLE agen : INTEGER :=0;

50

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

BEGIN

IF (clk'EVENT AND clk="1") THEN

i<=i(14 downto 0) & (i(15) xor i(13) xor i(12) xor i(10));
o<=i;

end if;

END PROCESS;

END fib_nc;

Appendix A-3

Hamming Encoder:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY hamming encoder IS
PORT (
data: in std_logic_vector (3 downto 0);
0: OUT std_logic_vector (6 downto 0));
END hamming encoder;
ARCHITECTURE enc OF hamming_encoder IS
Signal d_1: STD_LOGIC;
Signal d_2: STD_LOGIC;
Signal d_3: STD_LOGIC;
BEGIN
PROCESS (data)
BEGIN
d_1l<=data(1) xor data(2) xor data(3);
d_2<=data(0) xor data(2) xor data(3);
d_3<=data(0) xor data(1) xor data(3);
o<=d_3&d_2&d_1&data;
END PROCESS;
END enc;

Hamming Decoder:

51

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY hamming_decoder IS

PORT (

data_in: in std_logic_vector (6 downto 0);
data_out: out std_logic_vector (6 downto 0);
e:buffer std_logic_vector(2 downto 0));

END hamming decoder;

ARCHITECTURE dec OF hamming_decoder IS
--Signal e: STD_LOGIC_vector(2 downto 0);
Signal reg: STD_LOGIC_vector(6 downto 0);
BEGIN

PROCESS (data_in)

BEGIN

reg<=data_in;

e(0)<=data_in(1) xor data_in(2) xor data_in(3)xor data_in(4);
e(1)<=data_in(0) xor data_in(2) xor data_in(3)xor data_in(5);
e(2)<=data_in(0) xor data_in(1) xor data_in(3)xor data_in(6);
IF (e="110") THEN

reg(0) <= not (data_in(0));

ELSIF (e="101") THEN

reg(1) <= not (data_in(1));

ELSIF (e="011") THEN

reg(2) <= not (data_in(2));

ELSIF (e="111") THEN

reg(3) <= not (data_in(3));

ELSIF (e="001") THEN

reg(4) <= not (data_in(4));

ELSIF (e="010") THEN

reg(5) <= not (data_in(5));

ELSIF (e="100") THEN

reg(6) <= not (data_in(6));

end if;

52

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

data_out<=reg;
END PROCESS;
END dec;

Error:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY error IS

PORT (

enc_data: in std_logic_vector (6 downto 0);
e_number: in integer range 0 to 6;

err_data: OUT std_logic_vector (6 downto 0));
END error;

ARCHITECTURE n_err OF error IS

Signal err_reg: STD_LOGIC_vector (6 downto 0);
BEGIN

PROCESS (enc_data)

BEGIN

err_reg<=enc_data;

err_reg(e_number)<= not enc_data(e_number);
err_data<=err_reg;

END PROCESS;

END n_err;

Hamming

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY hamming IS

PORT (

system_data: in std_logic_vector (3 downto 0);
encoded_data: buffer std_logic_vector (6 downto 0);
e_num: in integer range 0 to 6;

error_data: buffer std_logic_vector (6 downto 0);

53

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

corr_data: out std_logic_vector (6 downto 0);
e_num_bin: buffer std_logic_vector(2 downto 0)
);
END hamming;
ARCHITECTURE enc_dec_err OF hamming IS
component hamming encoder
PORT
(
data: in std_logic_vector (3 downto 0);
o: OUT std_logic_vector (6 downto 0)
);
end component;
component error
PORT
(
enc_data: in std_logic_vector (6 downto 0);
e_number: in integer range 0 to 6;
err_data: OUT std_logic_vector (6 downto 0)
);
end component;
component hamming_decoder
PORT
(
data_in: in std_logic_vector (6 downto 0);
data_out: out std_logic_vector (6 downto 0);
e:buffer std_logic_vector(2 downto 0)
);
end component;
BEGIN
block_1: hamming_encoder port map (
data=>system_data,
o=>encoded_data
);
block_2: error port map (

54

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

enc_data=>encoded_data,
e_number=>e_num,
err_data=>error_data

);
block_3: hamming decoder port map (
data_in=>error_data,
data_out=>corr_data,
e=>e_num_bin

);

end enc_dec_err;

55

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

References

Babu, A. S., & Anand, B. (2020). Modified dynamic current mode logic based LESR for
low power applications. Microprocessors and Microsystems, 72, 102945.

Hazwani, S., Khan, S., Siddiqi, M. U., Al-Khateeb, K. A., Habaebi, M. H., & Shahid, Z.
(2014, January). Randomness analysis of pseudo random noise generator using
24-bits LESR. In 2014 5th International Conference on Intelligent Systems,
Modelling and Simulation (pp. 772-774). IEEE.

Hong, E., Choi, K. A., & Joo, J. (2023). Efficient Two-Stage Max-Pooling Engines for an
FPGA-Based Convolutional Neural Network. Electronics, 12(19), 4043.

Hussain, F., & Sarkar, S. (2024, April). Design and FPGA Implementation of Five Stage
Pipelined RISC-V Processor. In 2024 IEEE 9th International Conference for
Convergence in Technology (I2CT) (pp. 1-6). IEEE.

Khedkar, A. A., & Khade, R. H. (2017). High speed FPGA-based data acquisition

system. Microprocessors and Microsystems, 49, 87-94.

Lin, J., Xiong, C., & Yan, Z. (2015). A high throughput list decoder architecture for polar
codes. [EEE Transactions on Very Large Scale Integration (VLSI)
Systems, 24(6), 2378-2391.

Lin, J., Yan, Z., & Wang, Z. (2016). Efficient soft cancelation decoder architectures for
polar codes. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(1), 87-99.

56

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Luo, Y., Fan, C,, Xu, C,, & Li, X. (2024). Design and FPGA implementation of a high-
speed PRNG based on an nD non-degenerate chaotic system. Chaos, Solitons
& Fractals, 183, 114951.

Masera, G., Piccinini, G., Roch, M. R., & Zamboni, M. (1999). VLSI architectures for
turbo codes. I[EEE Transactions on Very Large Scale Integration (VLSI)
Systems, 7(3), 369-379.

Nagar, M. S., Mathuriya, A., Patel, S. H., & Engineer, P. J. (2024). High-Speed Energy-
Efficient ~Fixed-Point Signed Multipliers for FPGA-Based DSP
Applications. IEEE Embedded Systems Letters.

Naveen, K., Manonmai, V. S. L., Nikhitha, M. S. J., Pradeep, V., & Kumar, G. K. (2023,
April). VLSI Architecture of a High Speed Polar Code Decoder using Finite
Length Scaling LDPC Codes. In 2023 Second International Conference on
Electrical, Electronics, Information and Communication Technologies
(ICEEICT) (pp. 1-7). IEEE.

Pedroni, V. A. (2020). Circuit design with VHDL. MIT press.

Singh, S. P., Rai, R., Awasthi, S., Singh, D. K., & Lakshmanan, M. (2023). Vlsi
implementation ~ of error correction codes for molecular

communication. Wireless Personal Communications, 130(4), 2697-2713.

Win, T. L., & Kyaw, N. C. (2008). Speech Encryption and Decryption Using Linear
Feedback Shift Register (LFSR). International Journal of Electronics and
Communication Engineering, 2(12), 2720-2725.

Wu, G., Wang, K., Zhang, J., & He, J. (2018). A lightweight and efficient encryption
scheme based on LFSR. International Journal of Embedded Systems, 10(3),
225-232.

Xu, B., Zou, S., Bai, L., Chen, K., & Zhao, J. (2024). A general discrete memristor
emulator based on Taylor expansion for the reconfigurable FPGA

implementation and its application. Nonlinear Dynamics, 112(2), 1395-1414.

Yuan, B., & Parhi, K. K. (2013). Low-latency successive-cancellation polar decoder
architectures using 2-bit decoding. IEEE Transactions on Circuits and Systems
I: Regular Papers, 61(4), 1241-1254.

57

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Zhang, L., Ye, S., Gou, Z,, Yang, X,, Dai, Q., Wang, F., & Lin, Y. (2024). An Efficient
Parallel CRC Computing Method for High Bandwidth Networks and FPGA
Implementation. Electronics, 13(22), 4399.

4. FPGA implementations of
Basic Logical Operators and

Error Correction Algorithms

1. Introduction to Experimental Designs

In literature, many papers have focused on practical systems related to
embedded systems, including VLSI, FPGA, and etc (Gdaim et al., 2014;
Bakiri et al., 2018; Ishihara and Yasuura, 1997; Camposano and Wolf,
2012). In this section, we give experimental and real time
implementations of digital circuits based on FPGA board. One of the
most important issues is synchronization problems for real time FPGA
implementations because of its high-speed processing capacity
(Abdelhalim et al., 2011; Pences et al., 2024; Tang, 2023). In the first
stage of implementation, the pin assignment can be provided to observe

58

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

input and output signals via Input-Output terminals of FPGA board. In
this section of the book, specific implementations are given for DE-0
Nano FPGA board which is very useful for many applications. Its
specifications can be given as illustrated in Figure 1.

LED Group

(JopeaH) suid punoib
pue DDA ‘indino ‘indu

Figure 1. DEO-Nano Board

As shown in the figure, DEO-Nano FPGA board has Cyclone IV
processor (EP4CE22F17C6). In addition to this, it consists of an analog-
to-digital converter (ADC), 50MHz clock generator, 40 Pin Header,
Push buttons, LEDs and Dip switches (Terasic, 2019). One of the most
advantages is the number of input-output pins due to observe the
performance and the changing of variable versus time. To implement a
design created by Quartus software, the first stage is a pin assignment
which is given in Figure 2 a. Figure 2 b and 2 ¢ also indicate the pin
locations. This information can be provided by the user manual of
related FPGA board.

(a) (b) ()

Figure 2. Pin assignment condition.

59

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

To transfer .sof file to FPGA board, the programmer must be selected in
the menu of tools which is located in Figure 3. Then, the sof. file can be
loaded to board by using hardware setup window as given in Figure 4.
This window can give information about whether the FPGA board is
connected to the server computer which manages and hosts the whole
VHDL or Verilog code structure.

Fe Ed Ven Poed Amgwents Procesang Tosk W

G a9 tresr

r

Advars

@ chorurar
T —

W Prograneer

aLe 0% o002z

Figure 3. Loading of the program to FPGA board

MY SO PP OO RN O9

4o x 1 Unear baf* 0 @ Complaton Report - Unewr @ havmg

3 Add Device.

<5 PALT T ”
¢ — >
T ‘

Figure 4. The Test of connection FPGA with Server Computer

As shown in Figure, USB-Blaster is seen in the Hardware Setup window
if the connection is done. It can be considered that any hardware

60

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

connection cannot be provided under selection of currently selected
hardware is empty.

2. Experimental results for Basic Gates
2.1 NOT Gate

There is very difference between simulation and experimental
applications due to their environments. Although the simulation
environment is very applicable in terms of assigned of variables, the
experimental systems are very limited to observe the variation of
system. Hence, some supplementation blocks or inputs in experimental
systems must be made.

In this section, experimental results are given for basic gates such as,
NOT, OR, XOR. To observe the results during real time application, it is
made some modifications about the projects of basic gates mentioned in
the first section. In Figure 5, it is given a NOT gate for experiments.

altpllo

. 1
inclk0 cofl M

inciko — inclko frequency : 50.000 MHz out
areset | operation Mode: Normal locked | |in |

inst1 Cyclone IV E

Figure 5. NOT gate for experiment

Figure 5 consists of a PLL (Phase Locked Loop) block to adjust variable
input signal at input of NOT gate. To able to track the alteration, both
input and output must be assigned by FPGA pin. The oscilloscope
output related to NOT gate in real time FPGA board is given in Figure
6.

61

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Figure 6 The experimental result for NOT gate

In Figure 6, there are two signals which are input and out signals of NOT
gate given in Figure 5. As shown in Figure 5, the PLL generates clock
signal by dividing input clock signal with 10. Therefore, the output of

PLL must be 5 MHz. According to Figure 6, one period of clock signal
is equal to 200ns.

2.2 OR Gate
altpllo
inclkO > jincko inclko frequency: 50,000 MHz <o oR2
areset | operation Mode: Normal locked D fourerT P out
st
Lco [wsooo] .00 [s0.00]
inst1 Cyclone 11l

Ipm_constant0

inst3

Figure 7 The experimental architecture for OR gate

As mentioned in the previous section, the output of OR gate will be a
logical '1' level if any input takes logical '1'. One of inputs of OR gate is

62

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

assigned a constant value of which is equal to logical '0' since the change
of output signal can be monitored versus clock signal.

Viv ~43.00us Trigd®
T g

o et

Figure 8. Experimental results for OR gate

In figure 8, it is given real time results obtained by using FPGA board.
The yellow line defines the output signal of OR gate while blue line is
expressed as input signal of OR gate. Additionally, the input signal is
assigned as clock signal which is generated from PLL block. The
constant signal is selected as logical '0" to observe the output signal
versus clock signal. The yellow line is rising up logical '1' level while the
blue line gets to alogical '1'. Otherwise, the yellow line is logical '0' level.

2.3 Experimental results for LFSR block

The theoretical framework related to LFSR is mentioned in the previous
section. Additionally, it is given simulation results for LFSR timing
process. However, LESR architecture given in the previous section must
be improved to achieve the experimental results. The counter block is
added to LFSR system to spread in terms of time and to observe the
experimental results via oscilloscope display. In this section,
experimental results are introduced for LESR block.

63

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Ipm_constant0 |

Figure 5. LFSR architecture for experimental applications.

In Figure 6, a sequential bit vector is given in terms of time. According
to the figure, 1001101011100111 bits is passed through a LESR block.
Then, 1100110101110011 bits are obtained at the output of LESR block
since 15%, 13, 12, and 10™ bits are used to apply on XOR gates, and
result is added to 15™ bit. The LSB value of bit line is rotated to merge
the result bit to bit sequent. Moreover, a 0’s group is used to split LEFSR
packet from each other, and to provide a synchronization between two
packets. For LESR given in this chapter, a code structure is presented in
the Appendix section.

Figure 6. LFSR architecture for experimental applications.

64

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

(c)
Figure 7. LFSR signal period

In Figure 7, experimental results for LESR is presented to observe the
comparison among LFSR bit packets, and exhibit the period of a LFSR
packet. According to experimental results, 16 bits of LESR are displayed
at the oscilloscope screen of which time ranging is adjusted as 500ns for
each five nodes. It shows the time of 3.2 us between two cursors. Hence,
a bit length is equal to 200ns. As mentioned LFSR code structure, a bit
length is selected as 10 clock cycle which is period of 20 ns. A new bit
rotates the bit vector to the right direction.

2.4 Experimental results for Hamming

65

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

0 [— -1
hamming_decod
1 —L e[2..0]
hamming_encoder ck e[2.0) e s Y (20 R
| data_in[6.0] corr_bit |—{ P“E‘“—D bo \

— clk 0[6..0] PN_C3
Ipm_constant0 [~ data[3..0] hm — inst2

1;
2
instT
inst
hm

Figure 7. Block scheme for Hamming encoder and decoder

In Figure 7, a block scheme is represented to observe Hamming encoder
and decoder architectures for real time implementations which consist
of Pin assignments of input and output blocks. According to the scheme,
the clock signal is generated via R8 pin which is defined as clk in this
architecture.

Figure 8. The receiver and transmitter for Hamming experimental
system

In Hamming implementation system, the data bit is selected as "1100".
Therefore, the output of hamming encoder is equal to "1001100". In
Figure 8, it has been given a real time system that includes transmitter
FPGA (Hamming encoder) and receiver FPPGA (Hamming Decoder).
The FPGA located on the left side shows "0001100" bits at the LEDs
group while the FPGA placed in right side presents "1001100". The
second FPGA is corrected the 7" bit of encoder output.

66

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

In figure 9, bits are spread in time axes. The period of bit transmission
is selected as 200ns as shown in the figure. The first implementation
which is given in 9.a shows is similar as experimental system which
consists of transmitter and receiver given in Figure 8. In the second
results, the 4" bit is inverted to observe the error correction process. In

Figure 9.b, transmitter system transfers "1011100" data while receiver
detects "1001100".

(a) (b)

Figure 9. The change over the time for Hamming experimental system

Appendix A

VHDL code of LFSR for Real Time Project

LIBRARY ieee;
USE ieee.std_logic_1164.all;

67

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

ENTITY LEFSR IS

PORT (

clk: IN STD_LOGICG;

o: OUT std_logic_vector (15 downto 0);d:out std_logic;
count: in integer range 0 to 255;hm: buffer std_logic);
END LFSR;

ARCHITECTURE serial_converter OF LFSR IS
Signal i: STD_LOGIC_vector (15 downto 0):= "1100111100010110";
Signal data: STD_LOGIC;

BEGIN

PROCESS (clk)

--VARIABLE agen : INTEGER :=0;

BEGIN

IF (IKEVENT AND clk='1") THEN

if count=250 then

i<=i(14 downto 0) & (i(15) xor i(13) xor i(12) xor i(10));
0<=i;

end if;

CASE count IS

WHEN 0 => hm<='0;

WHEN 10 => hm<='0';

WHEN 20 => hm<='0’;

WHEN 30 => hm<='0';

WHEN 40 => hm<=i(0);

WHEN 50 => hm<=i(1);

WHEN 60 => hm<=i(2);

WHEN 70 => hm<=i(3);

WHEN 80 => hm<=i(4);

WHEN 90 => hm<=i(5);

WHEN 100 => hm<=i(6);

WHEN 110 => hm<=i(7);

WHEN 120 => hm<=i(8);

WHEN 130 => hm<=i(9);

WHEN 140 => hm<=i(10);

68

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

WHEN 150 => hm<=i(11);
WHEN 160 => hm<=i(12);
WHEN 170 => hm<=i(13);
WHEN 180 => hm<=i(14);
WHEN 190 => hm<=i(15);
WHEN 200 => hm<='0';
WHEN 210 => hm<='0';
WHEN 220 => hm<='0';
WHEN 230 => hm<='0";
WHEN 240 => hm<='0';
WHEN OTHERS => hm<=hm;
END CASE;

end if;

END PROCESS;

END serial converter;

VHDL code of Counter for Real Time Project

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY counter IS

PORT (

clk: IN STD_LOGIC; n: in integer range 0 to 250;
counter: buffer integer range 0 to 250);
END counter;

ARCHITECTURE behv OF counter IS
BEGIN

PROCESS (clk)

BEGIN

IF (cIk EVENT AND clk='1") THEN

if counter=n then

counter<=0;

else

counter<=counter+1;

end if;

69

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

end if;
END PROCESS;
END behv;

Appendix B

VHDL code of Hamming Encoder for Real Time Project

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY hamming_encoder IS

PORT (clk: in std_logic;

data: in std_logic_vector (3 downto 0);
o: buffer std_logic_vector (6 downto 0);
hm: buffer std_logic);

END hamming encoder;
ARCHITECTURE enc OF hamming_encoder IS
Signal d_1: STD_LOGIC;

Signal d_2: STD_LOGIC;

Signal d_3: STD_LOGIC;

BEGIN

PROCESS (data)

variable c: integer:=0;

BEGIN

IF (IKEVENT AND clk='1") THEN

if c=0 then

d_1l<=data(1) xor data(2) xor data(3);
d_2<=data(0) xor data(2) xor data(3);
d_3<=data(0) xor data(1) xor data(3);
o<=(d_3)&d_2&(not d_1)&data;
hm<=0(6);

elsif c=10 then

hm<= o(5);

elsif c=20 then

70

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

hm<=0(4);

elsif c=30 then
hm<=0(3);
elsif c=40 then
hm<=0(2);
elsif c=50 then
hm<=0(1);
elsif c=60 then
hm<=0(0);
elsif c=69 then
c=-1;

end if;

c=c+l;

end if;

END PROCESS;
END enc;

VHDL code of Hamming decoder for Real Time Project

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY hamming decoder IS

PORT (clk: in std_logic;

data_in: in std_logic_vector (6 downto 0);
e:buffer std_logic_vector(2 downto 0);
corr_bit: out std_logic);

END hamming decoder;

ARCHITECTURE dec OF hamming_decoder IS
--Signal e: STD_LOGIC_vector(2 downto 0);
Signal reg: STD_LOGIC_vector(6 downto 0);

BEGIN
PROCESS (clk)

71

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

variable c: integer:=0;

BEGIN

IF (I EVENT AND clk='1") THEN

if c=0 then

reg<=data_in;

e(0)<=data_in(1) xor data_in(2) xor data_in(3)xor data_in(4);
e(1)<=data_in(0) xor data_in(2) xor data_in(3)xor data_in(5);
e(2)<=data_in(0) xor data_in(1) xor data_in(3)xor data_in(6);

IF (e="110") THEN

reg(0) <= not (data_in(0));
ELSIF (e="101") THEN
reg(1) <= not (data_in(1));
ELSIF (e="011") THEN
reg(2) <= not (data_in(2));
ELSIF (e="111") THEN
reg(3) <= not (data_in(3));
ELSIF (e="001") THEN
reg(4) <= not (data_in(4));
ELSIF (e="010") THEN
reg(5) <= not (data_in(5));
ELSIF (e="100") THEN
reg(6) <= not (data_in(6));
end if;

corr_bit<=reg(6);

elsif c=10 then

corr_bit<= reg(5);

elsif ¢c=20 then
corr_bit<=reg(4);

elsif c=30 then
corr_bit<=reg(3);

72

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

elsif c=40 then
corr_bit<=reg(2);
elsif c=50 then
corr_bit<=reg(1);
elsif c=60 then
corr_bit<=reg(0);
elsif c=69 then
c:=-1;

end if;

c:=c+1;

end if;

END PROCESS;

END deg;

References

Abdelhalim, K., Smolyakov, V., & Genov, R. (2011). Phase-synchronization early
epileptic seizure detector VLSI architecture. IEEE transactions on biomedical
circuits and systems, 5(5), 430-438.

Bakiri, M., Guyeux, C., Couchot, J. E, & Oudjida, A. K. (2018). Survey on hardware
implementation of random number generators on FPGA: Theory and

experimental analyses. Computer Science Review, 27, 135-153.

Camposano, R., & Wolf, W. (Eds.). (2012). High-level VLSI synthesis (Vol. 136).

Springer Science & Business Media.

Gdaim, S., Mtibaa, A., & Mimouni, M. E (2014). Design and experimental
implementation of DTC of an induction machine based on fuzzy logic control
on FPGA. IEEE transactions on fuzzy systems, 23(3), 644-655.

Ishihara, T., & Yasuura, H. (1997). Experimental analysis of power estimation models
of CMOS VLSI circuits. IEICE transactions on fundamentals of electronics,

communications and computer sciences, 80(3), 480-486.

73

FPGA-Based Architectures: An Introduction to Experimental Designs with VHDL

Pensec, W., Alari, E R., Lapotre, V., & GOGNIAT, G. (2024, July). Defending the
Citadel: Fault Injection Attacks against Dynamic Information Flow Tracking
and Related Countermeasures. In 2024 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI) (pp. 180-185). IEEE.

Tang, Z. (2023, February). OFDM communication system based on FPGA. In 2023
3rd Asia-Pacific Conference on Communications Technology and Computer
Science (ACCTCS) (pp. 666-670). IEEE.

Terasic. (2019). DEO-Nano-SoC User Manual.

74

